
Applying Parallel Processing
Approach for Interactive Global

Illumination

Mahmoud Zeidan

Computer Science Department
Faculty of Computer and Information Sciences

Ain Shams University

A thesis submitted for the degree of

Master of Science (M. Sc.)

2011 July

Abstract

One of the ultimate goals of computer graphics is to produce realism in simu-

lated scenes. Global illumination algorithms are based on efficiently simulating

the complicated physical details of light transport inside 3D scenes. But such

techniques still to some degree miss the interactive and real-time rendering rate

due to the complexity of its core algorithms. At the core of most global illumina-

tion algorithms is the ray tracing algorithm. However, it was noticed that the main

bottleneck of any ray tracing algorithm is ray traversal. So in order to enhance the

rendering time we have to target the ray tracing and its core primitives including;

hierarchy construction, ray traversal, and shading calculation.

With the new parallel architecture offered by modern graphics hardware we can

reformulate global illumination algorithms into efficient and scalable parallel im-

plementations on graphics processing unit (GPU). In this thesis, we develop a

parallel Whitted style ray tracer on GPU, and map all the stages of the photon

mapping algorithm onto GPU employing recent and efficient parallel algorithm

for construing a point based KD-tree.

We introduce a new parallel algorithm for building binned SAH BVH and eval-

uate the resulting tree hierarchy using parallel ray tracing techniques. We also

compare our BVH construction algorithm with recent state of the art KD-tree and

BVH construction algorithms on GPU. Our new algorithm for binned SAH BVH

construction gives better or comparable rendering performance to recent state of

the art hierarchical tree construction algorithms.

Finally, in this thesis we show that most recent parallel tree construction algorithms

can be reduced to a small and general set of parallel primitives and can be easily

explained with a small set of parallel utilities.

Contents

List of Figures v

List of Tables ix

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 2

1.3 Thesis Organization . 3

2 Introduction to Ray Tracing and Global Illumination 5

2.1 Ray Tracing . 5

2.1.1 Classic Ray Tracing -Whitted Style Ray Tracing- 6

2.1.2 Distributed Ray Tracing -a Ray Tracing Extension- 7

2.2 Global Illumination . 8

2.2.1 The Rendering Equation . 9

2.3 Previous Work in Rendering Techniques . 11

2.3.1 Rasterization . 11

2.3.2 Physically Based Rendering . 12

2.3.3 Reyes Rendering Architecture . 13

2.3.4 Precomputed Radiance Transfer . 13

3 Introduction to GPU Parallel Computing 15

3.1 GPU and Parallel Computing . 15

3.2 The CUDA Programming Model . 16

3.2.1 Host and Device . 16

3.2.2 Thread Hierarchy . 16

i

CONTENTS

3.2.3 Memory Hierarchy . 16

3.2.4 SIMD/SIMT Execution . 18

3.3 Data Parallel Primitive Algorithms on GPU 19

3.3.1 Parallel Reduction and Segmented Reduction 20

3.3.2 Parallel Scan and Segmented Scan . 20

3.3.3 List Compaction . 22

3.3.4 List Split and Segmented List Split 22

4 Parallel Hierarchical Tree Construction Algorithms on GPU 25

4.1 Motivation and Previous Work . 25

4.1.1 Spatial Partitioning Data Structures 25

4.1.2 Parallel Tree Construction on GPU 26

4.1.3 Data Parallel Primitive Algorithms on GPU 28

4.2 Data Parallel Operator and Data Parallel Utilities 28

4.2.1 Data Parallel Operator . 28

4.2.2 Frequently Used Data Parallel Utilities 29

4.2.3 Extensions to Data Parallel Operators and Utilities 30

4.3 BFS Tree Construction Algorithms on GPU 31

4.4 Parallel SAH KD-tree Construction Algorithm 32

4.4.1 Large Node Stage . 33

4.4.2 Small Node Stage . 39

4.5 Parallel SAH BVH Construction . 43

4.5.1 Large Node Stage . 44

4.5.2 Small Node Stage . 49

4.6 Proposed Parallel Algorithm for Building Binned SAH BVH 50

4.6.1 Filtering Next/Further Nodes . 56

4.6.2 Modifications and Extensions . 57

4.6.2.1 Reducing Scan Passes for Triangles Projection. 57

4.6.2.2 Projecting Triangles using Parallel Sorting. 59

4.7 Linear Bounding Volume Hierarchy (LBVH) 60

4.7.1 Hybrid binned SAH BVH Algorithm 63

4.8 Analysis and Discussion . 63

4.9 Evalutions and Comparisons of Proposed Proposed Tree Construction Algorithms 67

ii

CONTENTS

5 Ray Tracing on GPU 75

5.1 Parallel Ray Tracing on GPU . 75

5.1.1 Parallel Rays Generation and Bouncing 77

5.1.2 Building Shade Tree . 80

5.1.3 Accumulating Shading and Rendering 84

5.2 Results and Dicussion . 87

5.2.1 Ray Tracing Performance . 87

6 Photon Mapping on GPU 91

6.1 Introduction to Offline Photon Mapping . 91

6.1.1 The First Pass -Building Photon Map(s)- 91

6.1.1.1 Photon Emission . 91

6.1.1.2 Photon Tracing and Storing 93

6.1.2 The Second Pass - Rendering- . 93

6.1.2.1 Radiance Estimate . 94

6.1.2.2 Final Gather for Indirect Lighting 94

6.1.2.3 Irradiance Caching . 94

6.2 Parallel Photon Mapping on GPU . 95

6.2.1 Parallel Photon Tracing . 95

6.2.2 Building Photons KD-Tree on GPU 99

6.2.2.1 Initialization Stage . 101

6.2.2.2 Large Node Stage . 103

6.2.2.3 Small Node Stage . 109

6.2.3 Irradiance Estimation . 112

6.2.3.1 Selecting Irradiance Samples 112

6.2.4 Final Gather on GPU . 116

6.2.5 Rendering on GPU -Putting All Together- 116

6.3 Results and Dicussion . 116

6.3.1 Photon Mapping Performance . 116

7 Conclusion and Future Work 119

7.1 Conclustion . 119

7.2 Future Work . 120

iii

CONTENTS

A Frequently Used Utilities on GPU 121

B Parallel Chunking Primitive and Utility 129

Bibliography 133

iv

List of Figures

2.1 Ray Tracing Concept. 6

2.2 Whitted scene indicating light interaction with reflective and refractive mate-

rials, this image first appeared in [Whitted, 1980], image from [Parker, Bigler,

Dietrich, Friedrich, Hoberock, Luebke, McAllister, McGuire, Morley, Robi-

son, and Stich, 2010]. 8

2.3 Examples of visual effects generated using distributed ray tracing, from left

to right motion blur, soft shadows, and depth of field. Images from [Boulos,

Edwards, Lacewell, Kniss, Kautz, Shirley, and Wald, 2007]. 8

2.4 Image on the left is rendered with local illumination and image on the right is

rendered with global illumination. In the right image notice natural appearance

due to the indirect lighting effect on the ceiling around the light source and the

color bleeding of the red and blue walls on the white ceiling and the caustics

of the sphere ball on the floor. The two images from [Jensen, 2001]. 9

2.5 Example of such effects generated using global illumination algorithms a, b

from [Zhou, Hou, Wang, and Guo, 2008], and c, d from [Jensen, 2001]. 10

2.6 Rendering equation relate outgoing lighting by integrating incoming lighting

form all direction over upper hemisphere. 10

3.1 GPU internal organization and parallel code execution. 17

3.2 Segmented reduction example using sum and maximum operations. 20

3.3 Scan and segmented using the sum (+) operator. 21

3.4 List compaction example. 22

3.5 List split example. 22

3.6 Segmented List split example. 24

v

LIST OF FIGURES

4.1 Active nodes and associated triangles indices. 32

4.2 Dividing node’s triangles into fixed sized chunks of at most 4 triangles. 33

4.3 Empty space calculation. 34

4.4 Large nodes splitting. 35

4.5 Sorting KD-tree triangles to child nodes using two flags arrays. 36

4.6 Large/Small nodes filtering, in this example we assume that the node thrshold

T equals 4. 37

4.7 Clipping and distributing triangles to child nodes. 38

4.8 Small roots and related splits. 41

4.9 Small nodes modified structure, small node size is at most 4 primitives. 41

4.10 Small nodes splitting. 42

4.11 Splitting BVH nodes. 45

4.12 Sorting BVH triangles to child nodes. 46

4.13 Filtering large/Small nodes. 47

4.14 Distributing triangles to (child) nodes. 48

4.15 Projection triangles into corresponing bins. 51

4.16 Bins SoA calculation. 51

4.17 Sorting triangles locally to their respective bins. 52

4.18 Splitting BVH Node. 54

4.19 Distributing triangles to (child) nodes . 56

4.20 Filtering Next/Further nodes, in this example we use node Next/Further thresh-

old equals 2. 57

4.21 Sorting triangles into 4 bins using 2 sequential scans 58

4.22 Sorting triangles into 4 bins using radix sort 59

4.23 Morton codes generation. 60

4.24 LBVH heirarchy emission. 61

4.25 Sorted splits bounds and correspoinding nodes bound in the hierarchy. 62

4.26 LBVH pruning. 63

4.27 Benchmark scenes used to evaluate the construction and rendering performance

of our construction algorithms. 68

4.28 Rays assignment to CUDA threads, in each cell at checkerboard numbers at the

top left corner defines the sequential pixel order, and number in bottom right

corner defined the z-order. 70

vi

LIST OF FIGURES

5.1 Shading trees on Cornel box scene: (Right) various forms of shade trees corre-

sponding to different screen positions (left). 81

5.2 Shade tree node structure . 83

5.3 Shade tree post order traversal . 87

5.4 Our test scenes rendered on a 1024 X 1024 window using a GTX 285 device . 89

6.1 Main building blocks of the photon mapping algorithm 92

6.2 Main building blocks of GPU photon mapping algorithm 96

6.3 Photon positions and photons array . 101

6.4 Initializing the association list . 102

6.5 Empty space calculation . 104

6.6 Large Nodes Split . 105

6.7 Photons sorting to child nodes . 106

6.8 Large/Small Nodes Splitting . 106

6.9 Photons relocation . 108

6.10 Small roots creation . 110

6.11 Small nodes modified structure . 110

6.12 Small nodes split . 111

6.13 Our test scenes rendered using photon mapping at 2.5, 1.8, 2 fps on a 512 X

512 window using a GTX 285 . 117

A.1 Scan tail extraction for both inclusive and exclusive scan 122

A.2 Scan tails extraction for a segmented scan . 124

A.3 Key value sorting example . 126

A.4 Extracting sorted values bounds . 126

B.1 Chunks creation using segmented scan, for illustration purpose we set the

chunk size T equals 4. 130

B.2 Chunks creation using standard scan, chunk size T equals 4. 131

vii

LIST OF FIGURES

viii

List of Tables

ix

LIST OF TABLES

x

1

Introduction

1.1 Motivation

Computer graphics is the process of creating images by simulating light interaction with its

surrounding environment. One of the ultimate goals of computer graphics is to create realistic-

looking images; to reach such goal computer graphics researchers try to explore algorithms that

accurately simulate the complicated physical nature of light. Over decades researchers have

succeeded in achieving such goal and presented to the community a plethora of algorithms to

synthesis photo-realistic images that can be used in movies, virtual reality, cinematic effects,

scientific visualizations, and other applications.

The term global illumination refers to the large class of algorithms that accurately or approx-

imately simulate the physics of light and render photo-realistic images, examples of such al-

gorithms include but not limited to ray tracing [Whitted, 1980], path tracing [Kajiya, 1986],

radiosity [Goral, Torrance, Greenberg, and Battaile, 1984], bidirectional path tracing [Veach,

1997], and photon mapping [Jensen, 2001]. Most global illumination algorithms first appeared

as offline solutions and the real-time and interactive performance was governed to a large de-

gree by the hardware progress. In the past few years hardware companies offered powerful

machines that increased the computation power in both the vertical and horizontal directions
1 allowing computer graphics researchers to develop complex and parallel global illumination

1We mean by the vertical growth the increase in a single processing core power, and the horizontal growth the
increase in the number of processing cores.

1

1. INTRODUCTION

algorithms and reach the main goal of photorealism in a faster way (see e.g. [Wald, 2004]).

Most global illumination algorithms use the basic ray tracing techniques in the core rendering

process. Ray tracing in its abstract form can be viewed as an intersection query followed by

shading evaluation and it has been noticed that most time consumed in ray tracing is due to

intersection query [Whitted, 1980]. This is because every ray searches in all scene primitives

for the nearest intersection. To accelerate ray-primitive query; ray tracers always make use of

indexing data structures which organize 3D scene objects in a structured form suitable for fast

ray-primitives search. Indexing data structures are also referred in literature as spatial partition-

ing data structures and the most widely used indexing structures are grids, KD-trees, bounding

volume hierarchies (BVHs), and Octrees. A vast amount of research spent in exploring the

best spatial partitioning technique for ray tracing on both CPUs and multi-core CPUs and is

has been noticed that each technique offer the best way form a different perspective and in

some cases solutions are scene dependent or rely on certain assumptions of input scene (see

e.g. [Garanzha, 2009]), but generally the major issue in all spatial partitioning techniques is

the processing time including construction time and traversal time. Recently SIMD wide ma-

chines like GPUs offered a new parallel architecture which allowed fast parallel construction

of spatial partitioning data structures including grids [Kalojanov and Slusallek, 2009], BVHs

[Lauterbach, Garland, Sengupta, Luebke, and Manocha, 2009] , and KD-trees [Zhou et al.,

2008] and also allowed an interactive frame rate of the ray tracing [Zhou et al., 2008] and

photon mapping [Wang, Wang, Zhou, Pan, and Bao, 2009; Zhou et al., 2008]. But the GPU ar-

chitecture to some degree remains unexplored (see [Tzeng, Patney, and Owens, 2010] and [Aila

and Laine, 2009]) and compared to CPU; the GPU toolbox for global illumination algorithms

is far from being complete.

In this thesis we try to fill in the gap at the interactive and real-time rendering techniques based

on ray tracing and try to reach the goal of interactive global illumination by developing parallel

algorithms for ray tracing and photon mapping on modern GPU. We also explore new parallel

algorithms for constructing spatial partitioning data structures on GPU.

1.2 Contributions

In this thesis we present several contributions for interactive global illumination algorithms; we

present new parallel algorithms for constructing binned surface area heuristics (SAH) bound-

2

1.3 Thesis Organization

ing volume hierarchy (BVH) and compare our proposed algorithms to the up-to-date parallel

algorithms for constructing both BVHs and KD-trees, our analysis of hierarchy construction

allowed us to extend the data parallel primitives on GPU to include primitive operations for

constructing hierarchal trees. We also propose a simplified API to write and explain parallel

programs on GPU. The proposed API includes a new operator to express parallel code frag-

ments and data parallel utilities which are used as wrappers for data parallel primitives on GPU.

Then we employ the proposed API to reformulate the most recent parallel algorithms for hier-

archal tree construction. Finally, we develop a complete parallel global illumination solution

using both Whitted style ray tracing and photon mapping on GPU.

1.3 Thesis Organization

This thesis is organized as follow:

Chapter 1 presents a brief introduction about the interactive global illumination problem and a

general outline of the thesis.

In Chapter 2 we explain the basic ray tracing algorithm and its extensions followed by an intro-

duction to global illumination algorithms and the analytical form behind them, and introduce a

taxonomy of the most dominant techniques for photo-realistic rendering.

Chapter 3 gives a brief review about GPU parallel architecture and CUDA runtime and a review

the frequently used data parallel primitives on GPU.

Chapter 4 introduces the main contributions of this thesis. We begin by introducing our pro-

posed parallel API which includes a data parallel operator and data parallel utilities. Then we

use the proposed API to describe the up to parallel hierarchical tree construction algorithms on

GPU for both BVH [Lauterbach et al., 2009] and KD-tree [Zhou et al., 2008], and present our

new parallel binned SAH BVH construction algorithm followed by a performance comparison

between all these algorithms.

In Chapter 5 we present a parallel implementation for a Whitted style ray tracer on GPU [Zhou

et al., 2008] employing indexing structures presented in Chapter 4. We explain in details how

to build rays tree on GPU using our data parallel notation and present parallel ways for shading

evaluation.

3

1. INTRODUCTION

In Chapter 6 we build a complete global illumination solution on GPU using photon mapping:

firstly, we explain briefly the original photon mapping algorithm; secondly, we explain in de-

tails the mapping of the entire photon mapping algorithm on the GPU [Wang et al., 2009; Zhou

et al., 2008] using parallel algorithms for ray tracing, photon tracing, irradiance estimation,

final gathering, and shading evaluation. In this chapter, we also explain a parallel algorithm for

building a point based KD-tree on GPU [Zhou et al., 2008] using our proposed API.

In Chapter 7 we present final concluding remarks and directions for future work.

4

2

Introduction to Ray Tracing and
Global Illumination

2.1 Ray Tracing

Using computers to produce images is called image synthesis. Realistic image synthesis is

increasingly important in areas such as entertainment (movies, special effects, and games),

design, architecture, scientific visualizations and many more. A common trend in all these

areas is to request more realistic images of increasingly complex models within a small amount

of time.

Ray tracing [Whitted, 1980] is powerful rendering technique that has been used for image

synthesis and gained much interest in the past decades. The basic idea of ray tracing is to

follow light rays form light source and propagate them throughout the scene until they finish at

the viewer (see Figure 2.1). Ray tracing was proposed to accurately simulate the physical light

transport inside its surrounding environment.

5

2. INTRODUCTION TO RAY TRACING AND GLOBAL ILLUMINATION

Figure 2.1: Ray Tracing Concept.

2.1.1 Classic Ray Tracing -Whitted Style Ray Tracing-

A naı̈ve ray tracing algorithm [Whitted, 1980] begins by casting (primary) rays form each

pixel toward a virtual viewing plane and calculates the shading color at each pixel based on the

interaction between the primary ray, the surface materials, and light sources. Primary rays are

created using a virtual camera that can be oriented in the virtual 3D space in a way similar to

orienting a physical camera on a tripod. After shooting primary (visibility) rays we seek for

the nearest intersection inside the scene. The brute force approach tests every ray against each

primitive 1 in the scene and returns the nearest hit point. Several approaches have been used

to decrease the traversal cost and avoid testing each primitive. The main idea it to partition the

3D scene space into sub regions [Havran, 2000] using spatial partitioning data structures and

restrict the ray traversal to a small subspace and perform ray-primitive intersection with a small

subset of scene primitives. Most commonly used spatial partitioning data structures include;

uniform grids [Wald, Ize, Kensler, Knoll, and Parker, 2006], adaptive grids [Klimaszewski

1We mean by a primitive any geometric object that has a parametric representation like a sphere, a line, a cube,
a triangle and even a parametric surface such as a NURBS and a Bezier curve.

6

2.1 Ray Tracing

and Sederberg, 1997], hierarchal grids [Ize, Shirley, and Parker, 2007; Reinhard, Smits, and

Hansen, 2000], bounding volume hierarchies (BVHs) [Wald, 2007], Octrees, and KD-Trees

[Wald and Havran, 2006].

Once the primary ray finds a hit we calculate the shading color using information about the

incoming ray, the surface material at the hit point, and the light sources. First, we check the

surface material; if it is a diffuse material then we trace a shadow ray originating from the in-

tersection point toward each light source to check the light source visibility, where we mean by

the visibility a boolean function indicating that light source is directly seen from the intersec-

tion point and no other object blockades the shadow ray. If the light source is directly visible;

we calculate the shading color using a suitable shading model (e.g. Phong or Torrance-Spraw

shading). On the other hand, if the surface material is reflective, or refractive we recursively

trace secondary ray(s) in the reflection and/or the refraction direction and accumulate the re-

turned shading color to the pixel color. We continue the recursive ray traversal until we end

with a diffuse surface or reach a maximum traversal depth (e.g. 5).

As shown in Figure 2.2 we can use the ray tracing algorithm to simulate several visual effects

such as shadows, reflection and refraction. We refer interested readers to the book [Glassner,

1989] which presents a classical introduction to ray tracing and the excellent books [Morley

and Shirley, 2003; Pharr and Humphreys, 2010] which present more information about the

theory behind ray tracing and the state-of-the-art rendering techniques, and the book [Akenine-

Möller, Haines, and Hoffman, 2008] which is considered an excellent reference 1 for primitives

intersection algorithms.

2.1.2 Distributed Ray Tracing -a Ray Tracing Extension-

Although classic ray tracing algorithm allows us to simulate various visual effects such as shad-

ows, reflection and refraction; it still has limited capabilities for simulating these effects accu-

rately. For example, classic ray tracing is limited to sharp shadows, perfect (100%) reflective

and refractive materials and may produce aliasing artifacts. In [Cook, Porter, and Carpenter,

1984] Cook et al. introduced the idea of distributed ray tracing by sending more than one pri-

mary or secondary ray through each pixel using stochastic methods and integrating the returned
1The book’s homepage http://www.realtimerendering.com/ contains a detailed listing for most

intersection algorithms and related source code on the web, and the book’s blog is a rich source for up-to-date
information about the computer graphics field.

7

http://www.realtimerendering.com/

2. INTRODUCTION TO RAY TRACING AND GLOBAL ILLUMINATION

Figure 2.2: Whitted scene indicating light interaction with reflective and refractive materials, this
image first appeared in [Whitted, 1980], image from [Parker et al., 2010].

results. With distributed ray tracing we can remove the aliasing artifacts generated by the naı̈ve

ray tracing algorithm and add several visual effects such as motion blur, depth of field, soft

shadows, and glossy reflections (see Figure 2.3).

Figure 2.3: Examples of visual effects generated using distributed ray tracing, from left to right
motion blur, soft shadows, and depth of field. Images from [Boulos et al., 2007].

2.2 Global Illumination

The term global illumination (GI) refers to the class of algorithms that accurately simulate

the physical light transport in 3D scenes. A global illumination algorithm considers both the

light that comes directly from the light source (local illumination), and the indirect light that is

reflected and/or transmitted from other surfaces in the scene (global illumination) (see Figure

2.4).

Global illumination algorithms came to existence to efficiently simulate all natural light ef-

fects including those generated by ray tracing and to overcome the limitations of ray tracing

8

2.2 Global Illumination

(a) Cornell box illuminated by local illumination (b) Cornell box illuminated by global illumination

Figure 2.4: Image on the left is rendered with local illumination and image on the right is rendered
with global illumination. In the right image notice natural appearance due to the indirect lighting
effect on the ceiling around the light source and the color bleeding of the red and blue walls on the
white ceiling and the caustics of the sphere ball on the floor. The two images from [Jensen, 2001].

algorithms. Examples of such algorithms include path tracing [Kajiya, 1986], radiosity [Goral

et al., 1984], bidirectional path tracing [Veach, 1997], and photon mapping [Jensen, 2001]. In

many rending frameworks global illumination algorithms require integration with ray tracing

algorithms. However, effects generated by global illumination algorithms may be hard or even

impossible to be simulated by a naı̈ve ray tracer or its extensions. Examples of such effects that

can be efficiently simulated using global illumination algorithms include: color bleeding gener-

ated by diffuse surface inter-reflection; caustics produced by concentrated light rays refraction

and reflection through specular materials; subsurface scattering through translucent materials

like the skins and marbles; and volumetric rendering through participating media as in fog and

smoke (see Figure 2.5).

2.2.1 The Rendering Equation

In his seminal paper [Kajiya, 1986] Kajiya introduced the rendering equation; a unified theory

for all global illumination algorithms including ray tracing. The rendering equation is an inte-

gral equation that relate the reflected light at position xo in a specific direction to the incoming

light from all directions. It involves the integration of incident radiance over a hemispherical

surface centered at each surface location.

9

2. INTRODUCTION TO RAY TRACING AND GLOBAL ILLUMINATION

(a) Caustics effects
through refraction

(b) Caustics effects
through reflection

(c) Subsurface scatter-
ing through marble

(d) Participating media
effect

Figure 2.5: Example of such effects generated using global illumination algorithms a, b from
[Zhou et al., 2008], and c, d from [Jensen, 2001].

The rendering equation is defined using the formula:

Lr(~x, ~wr) = Le(~x, ~wr) +

∫
Ω
Li(~x, ~wi)fr(x, ~wi ← ~wr) cos θidωi

The reflected radiance Lr (see Figure 2.6) is computed by integrating the incoming radiance

Li over a hemisphere centered at certain surface point and oriented such that its north pole is

aligned with the surface normal. The term fr represents the Bidirectional Reflectance Distri-

bution Function (BRDF); a probability distribution function that describes the probability that

an incoming ray of light is scattered in a specific outgoing direction. The term Le refers to

emitted light and is used for energy conservation and the cosine term is used to account for

surface orientation relative to incoming direction.

Figure 2.6: Rendering equation relate outgoing lighting by integrating incoming lighting form all
direction over upper hemisphere.

10

2.3 Previous Work in Rendering Techniques

The integration term in the rendering equation is evaluated using numerical methods and a

large body of solutions to the rendering equation uses Monte Carlo techniques [Veach, 1997] 1.

The term Monte Carlo refers to algorithms that use the sampling theory and random variables

in the physical simulations and function evaluation.

2.3 Previous Work in Rendering Techniques

The past decades have witnessed a significant advancement in computer graphics research and

several techniques and algorithms have been proposed that either add more realism to rendered

scenes and/or decrease the rendering time. Due to the diverse rendering techniques in com-

puter graphics literature; proposing any taxonomy about past and current research directions in

rendering techniques will be to a large degree inaccurate or incomplete. So we will just give

a brief (and relatively biased) view about most popular rendering techniques which are still in

use today.

2.3.1 Rasterization

Early graphics systems used rasterization techniques (like OpenGL and DirectX) [Hearn and

Baker, 1994] in which 3D input primitives are rendered onto 2D displays after being pro-

cessing in fixed parallel pipelined stages (e.g. modeling, projection, culling, and shading) on

GPU. Although rasterization misses a lot of realism; it is still commonly used in games, CAD

systems, modeling tools and other applications due its simplicity and its real-time frame rate.

However, the limitation of the rasterized output of the fixed pipeline and the increased compu-

tation power of modern GPUs, allowed GPU chips companies to introduce the programmable

pipeline [Pharr, Lefohn, Kolb, Lalonde, Foley, and Berry, Pharr et al.] in which input primitives

are processed in a flexible parallel pipelined stages, and accordingly new high level languages

called shading languages (e.g. GLSL, HLSL, Cg) have appeared. This new technology allowed

researchers to render new effects and produce nearly physically-looking output [Engel, 2009]

1In his PhD [Subr, 2008] Subr presented a detailed survey about Monte Carlo methods in a chronological order,
and the SIGGRAPH courses [Jensen, 2004; Jensen, Arvo, Dutre, Keller, Pharr, , and Shirley, 2003] are excellent
references for Monte Carlo rendering techniques which explain both the theoretical and practical details of the
method.

11

2. INTRODUCTION TO RAY TRACING AND GLOBAL ILLUMINATION

in a fast way by writing small programs called shaders that are applied in parallel on input

primitive at certain processing steps in the programmable pipeline.

2.3.2 Physically Based Rendering

Physically based rendering techniques aim at creating naturally-looking synthetic images by

solving the rendering equations numerically. Most of these technique can be grouped into two

main categories; those use finite elements methods such as radiosity [Goral et al., 1984], and

those use point sampling such as ray tracing methods [Cook et al., 1984; Whitted, 1980]. Due

its ability to efficiently and simplicity to simulate various optical phenomena; point sampling

methods attracted computer graphics researchers to develop many rendering techniques based

ray tracing [Jensen, 2001; Veach, 1997].

Most ray tracing techniques used Monte Carlo methods [Jensen et al., 2003; Veach, 1997] to

solve the high dimensional rendering equation numerically. And under certain assumptions

Monte Carlo methods can render highly realistic images which are indistinguishable from im-

ages exist in real life. However, these methods first appeared as offline solutions due to many

reasons including: the high dimensionality of the rendering equation; the low convergence rate

of Monte Carlo solutions; and the relative complexity of simulated scenes (i.e. scene size).

Through decades, several techniques have been proposed to decrease the rendering time and

achieve an interactive or even real-time frame rate. A large body of research work was fo-

cused on decreasing the number of traced rays by efficiently sampling the rendering equation

[Hachisuka, Jarosz, Weistroffer, Dale, Humphreys, Zwicker, and Jensen, 2008], other direc-

tions of research where focused on efficiently tracing rays by developing fast and high quality

data structures [Havran, 2000; Wald, 2004, 2007; Wald and Havran, 2006] for scene primitives

or by developing faster ray traversal algorithms [Havran, 2000; Wald, 2004], or by tracing rays

together in packet [Wald et al., 2006; Wald, Slusallek, Benthin, and Wagner, 2001]. On the

other hand, recent advances in graphics hardware motivated new directions of research that

make efficient use of both the increased computation power and the effective register SIMD

(e.g., SSE, and GPU warp) instructions [Aila and Laine, 2009; Wald, Gnthery, and Slusalleky,

2004; Wald et al., 2006, 2001] and allowed them to propose fast parallel algorithms for hier-

archy construction [Lauterbach et al., 2009; Zhou et al., 2008] and ray tracing [Garanzha and

Loop, 2010].

12

2.3 Previous Work in Rendering Techniques

2.3.3 Reyes Rendering Architecture

The Reyes (Renders Everything You Ever Saw) [Cook, Carpenter, and Catmull, 1987] render-

ing architecture was developed in 1987 by Cook et al. as a fast way to render photo-realistic

images. Since that time, Reyes gained its popularity in movie industry 1 due the high qual-

ity and the relative speed of its output. Several stages of the Reyes architecture are amenable

to parallelization; that inspired many researchers to implement a specific stage [Patney and

Owens, 2008] or all stages [Zhou, Hou, Ren, Gong, Sun, and Guo, 2009] of the entire ren-

dering pipeline on modern parallel machines. One limitation of the Reyes architecture is its

inability to model many optical phenomena such as reflection and reflection, but recently Zhou

et al. [Hou, Qin, Li, Guo, and Zhou, 2010] incorporated a ray tracing engine into Reyes pipeline

which is fully implemented on GPU. Recent work in [Hou et al., 2010; Zhou et al., 2009] high-

lights several visual effects that have not been explored yet inside the Reyes architecture and

present an interesting point for further investigation on massively parallel GPU.

2.3.4 Precomputed Radiance Transfer

Signal processing techniques allowed researchers to present new mathematical representations

of reflection equation (i.e. the rendering equation under certain assumptions) [Ramamoorthi

and Hanrahan, 2001] and introduce real-time rendering algorithms based on precomputed ra-

diance transfer (PRT) [Ng, Ramamoorthi, and Hanrahan, 2003; Ramamoorthi and Hanrahan,

2002; Sloan, Kautz, and Snyder, 2002]. Most of PRT techniques assume distant environment

lighting and simplifies the heavy integration term in the rendering equation to a matrix-vector

multiplication which can be carried out efficiently on the graphics hardware (e.g. using shader

programming). However, one of the drawbacks of the PRT method is that it requires a relatively

complex and offline precomputation phase. Other drawbacks of this method include the large

amount of precomputed data [Ng et al., 2003; Sun, Hou, Ren, Zhou, and Guo, 2011], and the

relative complexity in rendering high frequency effects [Ng et al., 2003]. Interested readers can

find a good start and an excellent recap about this area in the recent survey by Ramamoorthi

[Ramamoorthi, 2009] 2.

1One successful Reyes rendering system which is commonly used in the movie industry is Pixar’s Photorealistic
RenderMan (PRMan)

2Novice readers can find a simple and detailed explanation about the PRT method in the technical report by
Green [Green, Green] and the author’s homepage contains a simple tutorial about the method http://www.

13

http://www.paulsprojects.net/opengl/sh/sh.html
http://www.paulsprojects.net/opengl/sh/sh.html

2. INTRODUCTION TO RAY TRACING AND GLOBAL ILLUMINATION

paulsprojects.net/opengl/sh/sh.html.

14

http://www.paulsprojects.net/opengl/sh/sh.html
http://www.paulsprojects.net/opengl/sh/sh.html

3

Introduction to GPU Parallel
Computing

3.1 GPU and Parallel Computing

In 1965 Gordon E. Moore came up with his law [Moore, 2000] that the number of transistors

would double every 18 months. For decades Moore’s law successfully applied to everything

including processors, memory chips, and wireless devices and was considered one of the main

driving forces behind hardware progress and accordingly the related software technology. On

the other, the demands for more real-time and high definition 3D graphics motivated hardware

chips companies to produce highly parallel, scalable and efficient GPU (graphics processing

unit). The good news was that GPU technology broke Moore’s law and has shown to move

faster than Moore’s law timeline in the past few years.

Although GPUs were first designed to support shader programming in which a small program

runs in parallel to process geometry and draw pixels, it was later used as a general paral-

lel architecture for non-graphics applications. These applications were referred as GPGPU

(General-Purpose computation on Graphics Processing Units) 1 and many researchers have

shown promising success and impressive results by using GPU as a massively parallel proces-

sor for solving different scientific problems.

1The GPGPU term was coined by Mark J. Harris [Harris, Owens, Sengupta, Zhang, Davidson, and Tseng,
2007].

15

3. INTRODUCTION TO GPU PARALLEL COMPUTING

3.2 The CUDA Programming Model

CUDA [NVIDIA, 2010] stands for Compute Unified Device Architecture. It is a C like pro-

gramming language designed to provide an abstraction for general purpose parallel computing

over GPU. The CUDA programming involves running code on two different platforms: a host

system that relies on one or more CPUs, and a card (frequently a graphics adapter) with one or

more CUDA-enabled NVIDIA GPUs (the device).

3.2.1 Host and Device

As illustrated in Figure 3.1; a parallel program start with a serial code on CPU that launches

many copies (up to millions) of simple function (kernel) that executes in parallel on the GPU

device. The host program is also responsible for memory allocation and de-allocation on the

device, as well as data transfer between host and device.

3.2.2 Thread Hierarchy

GPU can schedule millions of parallel threads running on different cores and executes the same

kernel on different data elements (Single Instruction Multiple Data Stream -SIMD-). Threads

are organized into 1D, 2D, or 3D groups called thread blocks, and thread blocks are organized

into 1D, 2D groups called grids. This organization has a tight correspondence to the memory

organization inside GPU device, the communication way between various kernels, and kernel

execution and scheduling.

3.2.3 Memory Hierarchy

CUDA assumes that both the host and the device maintain their own DRAM, referred to as host

memory and device memory respectively. Inside the device CUDA threads may access data

from multiple memory spaces during their execution as illustrated by Figure 3.1. A CUDA

device memory space can be classified as global, local, shared, texture, constant, and register

memory.

Global memory space is not cached and has the life time of the application and is visible to all

threads so it is used to store large blocks of data and it can be the best way to achieve global

16

3.2 The CUDA Programming Model

i n t main ()
{

i n t s i z e = 512 ;
i n t ∗HostData , ∗DevicData ;
Hos tData = (i n t ∗) ma l lo c (s i z e∗ s i z e o f (i n t)) ;
cudaMal loc (DevicData , s i z e∗ s i z e o f (i n t)) ;
cudaMemcpy (DevicData , HostData , s i z e∗ s i z e o f (i n t) , cudaMemcpyHostToDevice) ;
i n t sharedMemSize = 128∗ s i z e o f (i n t) ;
dim3 g r i d (2 , 2) ;
dim3 b l o c k (6 4 , 2) ;
ProcessOnGPU<<<g r i d , b lock , sharedMemSize>>>(DevicData , s i z e) ;
cudaMemcpy (HostData , DevicData , s i z e∗ s i z e o f (i n t) , cudaMemcpyDeviceToHost) ;
c u d a F r e e (DevicData) ;
f r e e (Hos tData) ;
r e t u r n 0 ;

}

Serial code executes on host and launches kennel

A grid of 2× 2 blocks

Block(0,0)
sm

Block(1,0)
sm

Block(0,1)
sm

Block(1,1)
sm

Texture Memory

Constant Memory

Global Memory

A block of 64× 2 threads (4 warps of 32 threads)

Shared Memory

ThreadIdx(x,y) 0,0 1,0 · · · 31,0 32,0 · · · 63,0

0,1 1,1 · · · 31,1 32,1 · · · 63,1

A warp of 32 threads execute commands together
Working threads Idle threads

g l o b a l vo id ProcessOnGPU (i n t∗Data , i n t S i z e)
{

e x t e r n s h a r e d i n t s d a t a [] ;
. . .

s y n c t h r e a d s () ; / / b l o c k ’ s s y n c h r o n i z a t i o n , a l l b l o c k ’ s t h r e a d s meet h e r e
i f (threadIdx.x%2)
{

// do instruction x
}
e l s e
{

// do instruction y
}
. . .

}

Kernel code executes on device

Figure 3.1: GPU internal organization and parallel code execution.

17

3. INTRODUCTION TO GPU PARALLEL COMPUTING

synchronization for a parallel program. Local memory is not cached and visible only inside a

kernel so it is used for automatic variables. The constant memory is a small part of memory

that is cached and visible to all threads so it is used for relatively small and frequently used

constants. The texture memory space is a part of memory that is cached and visible to all

threads and can be used to map relatively large and frequently used blocks of global memory

to achieve better cache performance. The shared memory space is much faster than global

memory space and visible to all threads inside a single block so it is used to copy small parts

of global memory into block space for better cache performance inside the block. The register

memory is visible inside a kernel and costs zero extra clock cycles per instruction. Table 3.1

summarizes the properties of memory spaces on NVIDIA GTX285 card which will be used in

our experiments.

Memory Space Scope Lifetime Size on GTX285

Global Application Application 1 GB
Local Thread Thread –
Constant Application Application 64 KB
Shared Block Block 16 KB/Block
Register Thread Thread 16 K. Register/Block

table 3.1: Device memory spaces and corresponding size on NVIDIA GTX285 card.

3.2.4 SIMD/SIMT Execution

In SIMD machines the same instruction is executed on multiple data elements to achieve par-

allelism. Whereas the same concept applies to SIMT (single instruction multiple threads) ma-

chines like GPUs; SIMT machines differ in many respects: although SMID instructions were

limited to very simple parallel instructions (e.g. additions and multiplications) on simple data

elements; SIMT machines magnifies the scale of the instruction to include a complete program

(kernel). To do so SIMT wide machines like GPU achieve parallelism in two ways: first, it

schedules, fetches, and executes threads in groups of (32) threads called warps; then, inside

the warp all the threads execute the same instruction in parallel. A warp executes one common

instruction for all threads at a time; first, the device hardware calculates various data-dependent

conditional branches and memory requirements for all threads in the warp, then it serially ex-

18

3.3 Data Parallel Primitive Algorithms on GPU

ecutes each branch separately, threads that do not follow certain branch remain idle. So full

efficiency is realized when all 32 threads of a warp agree on their execution path.

We illustrate the concept of SIMT execution in Figure 3.1. As you notice the host code running

on CPU calls the ProcessOnGPU kernel and launches 512 threads in total (a grid of 2 × 2

blocks, where each block is 64 × 2 threads). Each thread has its own copy of the kernel code

and threads evaluate and execute certain commands in warps of 32 threads. This is illustrated

by highlighting each warp with a color similar to the line of code it executes; for example, in

block 1; the first warp executes line 6 and the second warp executes line 8. Inside the warp

itself some threads may become idle since they don’t pass through this execution path and this

appears in odd numbered threads in warp 1 which don’t pass through the if condition in line 5.

The device function call syncthreads is the local synchronization point inside the block. All

threads inside the block don’t continue execution until all threads reach this point and evaluate

this function call. In general we use the local synchronization in order to confirm read/write

dependency, and this often occurs with shared and global memory transfers.

3.3 Data Parallel Primitive Algorithms on GPU

Data parallel primitive algorithms [Sengupta, Harris, Zhang, and Owens, 2007] are the main

building blocks for most general purpose applications on GPU. The driving motivation behind

these algorithms is the complex access pattern on input elements to produce output elements

in parallel and their importance arise in transforming nested data-parallel programs into a flat

data-parallel structure suitable for massively parallel GPU. Examples of such primitives include

parallel reduction, parallel scan [Harris, Sengupta, and Owens, 2007; Shubhabrata Sengupta

and Garland, 2008], parallel list split, parallel list compaction [Sengupta et al., 2007] and their

segmented versions [Sengupta et al., 2007; Zhou et al., 2008], and parallel sorting [Satish, Har-

ris, and Garland, 2009a], and compress-sort-decompress (CSD) [Garanzha and Loop, 2010].

Although most of these parallel primitives appeared earlier in classic references and imple-

mented using other models (e.g. PRAM model) [Quinn, 1993]; importing these algorithms

directly to GPU may not scale well with large inputs due to different architecture offered by

GPU. And since we make heavy use of these algorithms in our work and later we extend the

primitives toolbox for hierarchal tree construction algorithms (see Chapter 4), we will give a

brief introduction about these algorithms in this section.

19

3. INTRODUCTION TO GPU PARALLEL COMPUTING

3.3.1 Parallel Reduction and Segmented Reduction

The reduction algorithm takes as input an array and an arithmetic operation ⊕ to produce a

single value which is the result of applying the operator ⊕ to all elements in the input array.

For example consider the array [3, 7, 5, 4, 9, 2, 5, 3], if the operation ⊕ is an addition (+) then

the reduction result is 32, and if the operation ⊕ is a maximum (>) then the result is 9.

The segmented reduction primitive [Zhou et al., 2008] performs the reduction operation to

various partitions of the input array separately. The segmented reduction requires an additional

array (owner array) as an input in which each element is set to an integer value representing

the owner segment index of the corresponding input element. Figure 3.2 show the segmented

reduction output using various associative operations on the array [3, 7, 5, 4, 9, 2, 5, 3].

3 7 5 4 9 2 5 3Input Elements

0 0 0 0 0 1 1 1Owner

28 10Sum segmented reduction (+)

9 5Maximum segmented reduction (>)

Figure 3.2: Segmented reduction example using sum and maximum operations.

Although the segmented reduction algorithm requires the accessibility of all data elements

in the input array to produce output values; an O(N) work efficient algorithm [Zhou et al.,

2008] can be implemented on GPU which requires only log(N) steps and single pass on array

elements.

3.3.2 Parallel Scan and Segmented Scan

The scan operation takes an array of elements as an input and an associative binary function ⊕
with an identity value i and produces another array of the same size by performing the operation

⊕ on input elements preceding and possibly including each element. Scan is a critical algorithm

which is used to transform nested data-parallel programs into a flat data-parallel structure. For

the input array [a0, a1, a2, · · ·]; an exclusive scan performs the operation on every element

preceding the current one and returns the array [i, a0, a0⊕a1, a0⊕a1⊕a2, · · ·], and an inclusive

scan takes into consideration the current element and produces the array [a0, a0⊕a1, a0⊕a1⊕
a2, a0 ⊕ a1 ⊕ a2 ⊕ a3, · · ·]. A backward scan performs the scan operation form the end to the

beginning of the array and a segmented scan operates by scanning array partitions separately

20

3.3 Data Parallel Primitive Algorithms on GPU

and requires an additional array for Head Flags marking the input array partitions, each element

in the Head Flags array is set to 0 except at head locations of each segment which are set to 1.

Table 3.2 lists the most frequently used operations for the scan operation and related iden-

tity values, and Figure 3.3 shows an example of the scan and segmented scan using the sum

operation on the array [3, 7, 5, 4, 9, 2, 5, 3].

Operation Operator (⊕) Identity Value (i)

Sum + 0

Maximum > −∞
Minimum < ∞

table 3.2: Frequently used scan operations.

3 7 5 4 9 2 5 3Input elements

0 3 10 15 19 28 30 35Exclusive scan (+)

3 10 15 19 28 30 35 38Inclusive scan (+)

1 0 0 0 0 1 0 0Head Flags

0 3 10 15 19 0 2 7Exclusive segmented scan (+)

3 10 15 19 28 2 7 10Inclusive segmented scan (+)

Figure 3.3: Scan and segmented using the sum (+) operator.

As you notice the scan algorithm presents a complex access pattern that requires the accessibil-

ity of a variable number of input elements based on the relative position of each output element.

Without an efficient parallel implementation we may stick with an inefficient memory usage or

inefficient work load that causes the performance to reach the serial version of the algorithm.

To the best of our knowledge; an efficient O(log(N)) GPU parallel algorithms can be used to

compute the scan [Harris et al., 2007] and segmented scan [Satish et al., 2009a; Sengupta et al.,

2007] using only two passes over the input elements, these algorithms have a work complexity

O(N) which is the same work complexity 1 of the optimal serial scan algorithm.

1The work complexity refers to the total number of operations on input elements

21

3. INTRODUCTION TO GPU PARALLEL COMPUTING

3.3.3 List Compaction

The inputs to the list compaction primitive [Sengupta et al., 2007] are two arrays of the same

size; one for input elements and the other for true/false flags so that we need to keep and

compact elements corresponding to true values in the flags array.

a b c d e f g hInput elements

0 1 0 1 1 1 0 1Flags (F)

0 0 1 1 2 3 4 4New address = Scan(F)

b d e f hList compaction

Figure 3.4: List compaction example.

List compaction is implemented by substituting the true and false flags by 1 and 0 respectively,

then we apply an exclusive sum scan to the 1/0 Flags array, after the scan we check each

element at index i if its corresponding flag is 1; we store it at an address equals the value at the

same index i in the scanned array (see Figure 3.4).

3.3.4 List Split and Segmented List Split

0 1 2 3 4 5 6 7i = Index

a b c d e f g hInput Elements

0 1 0 1 1 1 0 1F = Flags

0 0 1 1 2 3 4 4FS = Scan(F)

NT = NumTrue = F[7]+FS[7] = 5

5 0 6 1 2 3 7 4Address = ((F=1) ? (FS[i]) : (i-FS[i]+NT)) Split into a single list

b d e f h a c gList Split

0 0 1 1 2 3 2 4Address = ((F=1) ? (FS[i]) : (i-FS[i])) Split into two lists

b d e f hTrue Elements

a c gFalse Elements

Figure 3.5: List split example.

22

3.3 Data Parallel Primitive Algorithms on GPU

In list split we divide an array of elements into two pieces based on another array of true/false

flags of the same size. We can either separate the input elements into two arrays or move all

elements marked true to the left of all elements marked false.

Similar to list compaction we first substitute the true and false flags by 1 and 0 respectively and

perform an exclusive scan to the 1/0 Flags array. Each input element at index i marked as true

is scattered to an address equals to the corresponding value in the scanned array (Scan(Flags)[i]),

and each element marked as false is scattered to an address equals to (i - Scan(Flags)[i] +

NumTrue). Where NumTrue is the total number of true elements which is calculated by sum-

ming the last value in both the Flags array and its scan. In some cases we are interested in

scattering true elements to an array and false elements to another array in such case we keep

the new address of true elements as in the previous case and modify the new address of false

elements to be (i - Scan(Flags)[i]) which represents the preceding number of false elements

(see Figure 3.5).

The segmented list split can be implemented the same way we implement the nonsegmented

version. But in fact we may need to know the start and size of each subarray at each segment.

So we use the segmented scan to scan the flags array and get the scan tails of each segment to

represent the size of left subarray of each segment and the consider the size of right subarray

of each segment as the difference between the input segment size and left subarray size. We

append the right scan tails to the left scan tails and scan this array if we want to split segments

into a single array, or scan each left scan tails and right scan tails arrays separately if we need

to split segments to two different arrays. We consider the scans of the scan tails as the start

addresses of output segments and after that we scatter each elements; if the element goes to

left subarray then we scatter it at an address defined by to the start address of its new output

segment plus an offset defined by the local running scan of ones, and if the element goes to

right subarray then we scatter it at an address defined by to the start address of its new output

segment plus an offset defined by the local running scan of zeros.

Practically we can use a nonsegmented scan for the flags array but in such case we define the

local running scan of ones in each segment as the difference in the scanned array between the

values at corresponding element index and the value at the start index of the old parent segment,

and define the local running scan of zeroes in each segment as the difference local offset of the

element in the old parent segment and the local running scan of ones until this element.

23

3. INTRODUCTION TO GPU PARALLEL COMPUTING

0 5ST = SegmentsStart

5 3SZ = SegmentsSize

0 1 2 3 4 5 6 7i = Index

a b c d e f g hInput Elements

0 0 0 0 0 1 1 1p = ParentSegment

1 0 0 0 0 1 0 0HF = HeadFlags

0 1 0 1 1 1 0 1F = Flags

0 0 1 1 2 0 1 1FS = SecScan(F, HF)

3 2LST = SegScanTails(F, FS, HF) 2 1 RST = SZ - LST

0 3STS = Scan(LST+RST) 5 7

0 3LSTS = Scan(LST) 0 2 RSTS = Scan(RST)

5 0 6 1 2 3 7 4Address = ((F=1) ? (STS[p[i]]FS[i]) : (STS[2+p[i]] + i-FS[i])) Split into a single list

b d e f h a c gList split

0 0 1 1 2 3 2 4Address = ((F=1) ? (LSTS[p[i]] + FS[i]) : (RSTS[p[i]] + i-FS[i])) Split into two lists

b d e f h(True) elements

a c g(False) elements

Figure 3.6: Segmented List split example.

24

4

Parallel Hierarchical Tree
Construction Algorithms on GPU

4.1 Motivation and Previous Work

Closely related research to our work includes hierarchical tree construction on both CPU and

GPU and parallel primitive algorithms on GPU. In this section we review the key techniques

and algorithms in each of these areas.

4.1.1 Spatial Partitioning Data Structures

Dominant spatial partitioning data structures include grids, Octrees, bounding volume hierar-

chies (BVHs), and KD-trees [Havran, 2000]. The use of grids in interactive applications is

motivated by their fast per-frame build time [Wald et al., 2006]; but due to the better quality

produced by other structures; BVHs, and KD-trees are preferred in most applications even with

their slower build time [Wald, 2004]. Efficient ways for building BVHs and KD-trees are used

interchangeably because of their similar tree structures, and most optimization techniques try

to make a tradeoff between the construction time and the resulting tree quality and accordingly

the traversal time. The key idea behind these techniques is where to place internal node splits

and when to stop node splitting. Simple and fast construction methods are based on median

node splitting; either at the spatial median as in KD-trees, or at the object median as in BVHs.

However, surface are heuristics (SAH) construction techniques [Goldsmith and Salmon, 1987]

25

4. PARALLEL HIERARCHICAL TREE CONSTRUCTION ALGORITHMS ON GPU

are widely used and known to be the best way to construct high quality spatial partitioning data

structures for ray tracing and other applications [Havran, 2000; Wald, 2004].

SAH construction algorithms are known to perform slowly since they require the evaluation

of the discreet SAH cost function at many split candidates in each node and efficient ways

to evaluate full sweep SAH usually require one or more sorting passes over all primitives

[Pharr and Humphreys, 2010; Wald et al., 2004; Wald and Havran, 2006]. To address this issue

researchers often sample and approximate [Wald, 2007] or interpolate [Hunt, Mark, and Stoll,

2006; Popov, Günther, Seidel, and Slusallek, 2006] the SAH at a small number of candidates

using projection and scanning and it was noticed that even with a small number of candidates

the SAH algorithms still provide good tree quality compared to other techniques [Wald, Boulos,

and Shirley, 2007]. Parallel extensions to the SAH construction algorithms on multi-core CPU

have been addressed (e.g. in [Hunt et al., 2006; Popov et al., 2006; Wald, 2007]) and used

to accelerate the construction process by up to orders of magnitudes. But since these parallel

algorithms were designed to work with a small number of threads they are not expected to scale

well on massively parallel architectures like GPUs.

4.1.2 Parallel Tree Construction on GPU

In [Lauterbach et al., 2009] Lauterbach et al. presented an efficient SAH BVH construction al-

gorithm that runs at interactive rates, and presented a fast BVH construction algorithm (LBVH

- Linear Bounding Volume Hierarchy) which favors the build time over tree quality and reduces

the construction process to parallel sorting. Lauterbach et al. addressed the slow build time of

the SAH BVH algorithm and the low tree quality of the LBVH algorithm by combining the

two algorithms into a hybrid one that builds the higher tree levels by the LBVH algorithm and

the lower tree levels by the SAH BVH algorithm. The resulting hierarchies from the hybrid al-

gorithm have shown to be of comparable quality to those produced by the SAH BVH algorithm

while their build time was relatively faster.

Zhou et al. [Zhou et al., 2008] presented a fast algorithm for building KD-tree on GPU in

breadth first search (BFS) order where the algorithm classifies processed nodes into two cat-

egories -large nodes and small nodes- according to the number of triangles in each node. To

balance between the build time and tree quality Zhou et al. used the spatial median and “empty

26

4.1 Motivation and Previous Work

space” maximization strategies to guide large nodes splits, and approximate SAH strategy to

guide small nodes splits.

In this thesis we extend the idea of large/small nodes categorization to construct binned SAH

BVH [Wald, 2007] by classifying nodes into more than two categories. We also employ the

approximate SAH to guide node splits at all tree levels and use the LBVH algorithm to construct

higher tree levels and accelerate the build time in a hybrid BVH algorithm. In contracts to the

work done by citeauthor Danilewski2010 [Danilewski, Popov, and Slusallek, Danilewski et al.]

which uses atomic operations for nodes classification; our interest is to show that this operation

and other operations required for parallel tree construction can be reduced to a standard set

of data parallel primitives that allow us to avoid the serialization issues incurred by atomic

operations.

One limitation of BVH and KD-tree construction algorithms on GPU [Lauterbach et al., 2009;

Zhou et al., 2008] is the excessive memory used to store temporary data which imposes a

limitation on applications involving large and complex models. To cope with this problem;

Hou, Sun, Zhou, Lauterbach, and Manocha [Hou et al., 2010] presented a lazy algorithm that

builds hierarchies on GPU using partial breadth first search (PBFS) manner by adjusting the

maximum work load according to the available device memory. Thus, to allow an efficient use

of fixed device memory they employed a simple but efficient scheme for anti-fragmentation

dynamic buffer management to store static and dynamic data on GPU. Although the PBFS

approach can be trivially extended to our binned SAH algorithms; we choose to build the

hierarchies in BFS order because our interest is to exploit the GPU streaming architecture for

real-time and interactive per-frame hierarchy construction in ray tracing applications. However,

our algorithms employ the buffer management strategies used in [Hou et al., 2010] for better

use of device memory.

Very recently Pantaleoni and Luebke [Pantaleoni and Luebke, 2010] presented the Hierarchical

Linear Bounding Volume Hierarchy (HLBVH) algorithm which constructs a hierarchy typical

to that produced by LBVH while enhancing the build time and memory bandwidth overhead on

GPU. To further enhance the tree quality produced by HLBVH Pantaleoni and Luebke [Pan-

taleoni and Luebke, 2010] presented a slower hybrid algorithm which uses the binned SAH

[Wald, 2007] for building the higher tree levels and the HLBVH for building the lower tree

levels. However, we choose LBVH to create our coarse grained hierarchy in our hybrid algo-

rithm since at higher tree levels the GPU memory bandwidth overhead is not a major limitation

27

4. PARALLEL HIERARCHICAL TREE CONSTRUCTION ALGORITHMS ON GPU

in LBVH. On the other hand our hybrid algorithm is the opposite to their algorithm since they

build the higher levels of the hierarchy using SAH and the lower levels using HLBVH.

4.1.3 Data Parallel Primitive Algorithms on GPU

Data parallel primitive algorithms [Sengupta et al., 2007] are the main building blocks for

most general purpose applications on GPU. The importance of these algorithms arises in trans-

forming nested data-parallel programs into a flat data-parallel structure suitable for GPU. Ex-

amples of such primitives include parallel reduction, parallel scan [Harris et al., 2007; Shub-

habrata Sengupta and Garland, 2008], parallel list split, parallel list compaction [Sengupta

et al., 2007] and their segmented versions [Sengupta et al., 2007; Zhou et al., 2008], paral-

lel sorting [Satish et al., 2009a], and compress-sort-decompress (CSD) [Garanzha and Loop,

2010]. In our study we found that such primitives can be extended to include new primitives

that wrap the general parallel tree construction operations such as node partitioning, node split-

ting, and triangles sorting, we also show that a simplified API can serve as a wrapper for most

of these primitives on GPU.

4.2 Data Parallel Operator and Data Parallel Utilities

In this section we introduce the data parallel operator which we use as a synonym of a parallel

kernel, and define frequently used parallel utilities which represent wrappers for data parallel

primitives [Harris et al., 2007; Sengupta et al., 2007] on GPU. These definitions introduce a lot

of terminologies used in explaining the details of our algorithms for the rest of this thesis.

4.2.1 Data Parallel Operator

A parallel operator defines a function that operates on a single data element and called to pro-

cess multiple data elements in parallel. It represents a parallel code fragment inside a foreach

· · · in parallel construct and often reflects a kernel definition/launch on GPU.

For example to define the distribute primitive [Sengupta et al., 2007] which copies a single

value to all array elements; we define the Distribute operator as shown in Listing 4.1.

28

4.2 Data Parallel Operator and Data Parallel Utilities

o p e r a t o r D i s t r i b u t e (O, I)
{

i = Thread Index
O[i] = I

}

Listing 4.1: Distribute operator definition

Then given an array Data of size N and an element E we call the Distribute operator as:

Distribute<N>(Data, E) to copy E to all elements of Data in parallel.

So far we assumed that we have a direct access to a global thread index (ThreadIndex) in the

operator definition and considered GPU as a general multi-threaded machine which performs

the same operation N times on different data elements in parallel.

4.2.2 Frequently Used Data Parallel Utilities

In order to allow better parallel code readability and explanation we present parallel utilities

in Appendix A to serve as a wrappers to most frequently used parallel primitives appeared in

literature. Table 4.1 lists and explains the parallel unities which will be used throughout the

thesis.

Utility Operation
Reduce Performs standard reduction
SegReduce Performs segmented reduction
Scan Performs standard scan
SegScan Performs segmented scan
ScanTail Get scan tail (e.g. last value of the scan result)
SegScanTails Get scan tails of various array segments
Append Appends an array to another one
Compact Performs parallel compaction of non-null elements
Split Splits an array into two subarrays
SegSplit Splits an array segments into two subarrays segments
Sort Performs key-value sorting
FindSortedBounds Finds the start index of each sorted cluster, and the size of a cluster
Rand Generates random numbers

table 4.1: Parallel utilities which will be used in all subsequent sections.

29

4. PARALLEL HIERARCHICAL TREE CONSTRUCTION ALGORITHMS ON GPU

4.2.3 Extensions to Data Parallel Operators and Utilities

Extending Operations to Higher Dimensions. In the former example of the Distribute op-

erator we ignored the internal grid/block organization of GPU threads; to allow the parallel

operator to reflect this organization we have two options:

1. Either by nesting the operator definition and call.

For example given the operator Distribute which we defined earlier; we define an opera-

tor HighDisitrbute as show in Listing 4.2.
o p e r a t o r H i g h D i s i t r b u t e (O, I , N)
{

i = Thread Index
D i s i t r b u t e<N>(O[i] , I [i])

}

Listing 4.2: HighDistribute operator definition

And then given a 2D array Data2D of size M × N and a array E1D of size M we call

this operator as: HighDisitrbute<M>(Data2D, E1D, N) to copy each element in E1D to the

corresponding row in Data2D array in parallel.

2. Or by reflecting grid/block organization in the operator call such as:

Operator < (GridDimX, GridDimY, GridDimZ) (BlockDimX, BlockDimY, BlockDimZ) > (Params)

, In such case we assume that we have a direct access to variables GridIdX, GridIdY,

GridIdZ, BlockIdX, BlockIdY, BlockIdZ in the operator definition which represent block

and grid indices for each respective axis. Using the same example to copy elements in

the array E1D to the rows of the 2D array Data2D; we define the Disitrbute2D operator

as show in Listing 4.3
o p e r a t o r D i s t r i b u t e 2 D (O, I)
{

row = GridIdX
c o l = BlockIdX
O[row] [c o l] = I [row]

}

Listing 4.3: Distribute2D operator definition

And then we call it as: Distribute2D< (M), (N) >(Data2D, E1D).

Vector Parameters. In many cases we may need to apply the same parallel operation on

multiple parameters, in such case instead of writing many calls of the same operator or utility

30

4.3 BFS Tree Construction Algorithms on GPU

for different data elements we allow the input/output parameters to take the vector format (

<Param1,Param2,...>), for example the call Distribute<N>(<Data1, Data2>, <E1,E2>)

will apply the same distribute operation between each pair (Datai, Ei), and the call Scan(<O1,

O2>, <I1,I2>,· · ·) will apply the scan operation between each pair (Oi,Ii).

Standard Numerical and Logical Operators. We also allow an implicit parallel extension

to standard numerical and logical operators on arrays. For example, given two arrays Data1,

Data2, the command Data1+Data2 will sum the two arrays element-wise in parallel, and the

command Data1 & Data2 will AND the two arrays element-wise in parallel.

4.3 BFS Tree Construction Algorithms on GPU

A general breadth first search (BFS) algorithm begins with a root node which encloses the

scene bounding box and contains all the primitives in the scene and builds the hierarchy in two

main steps: (1) for N tree nodes the algorithm tries to find the best split plane for each node

according to some heuristics and then either splits the node or keeps it unsplit; (2) for each split

node the algorithm distributes its triangles to its child nodes and returns to step 1 to process new

child nodes. The input to each iteration is an array of nodes and a triangle-node association

array which stores triangle indices contained in the nodes array sorted by node index. Each

node store the scene space it occupies, while each internal node stores pointers to its child

nodes and each leaf node stores the index of its first triangle in the triangle-node association

array and the number of triangles it contains.

On GPU some operations are parallelized on the nodes level and have to access child trian-

gles while some operations are parallelized on the triangles level and have to access parent

nodes. For the node-level parallelization we can use the node’s start triangle index and the

number of triangles to access the its triangles in the triangle-node association array, but for the

triangle-level parallelization in which we need to access parent nodes; we have to maintain an

indirection array that store for each triangle its parent node index in the nodes array.

Assumptions:

For better cache performance on GPU; all tree nodes data structures are stored in separate

arrays using structure of array (SoA) format [Wald, 2004]. Practically, we create and store all

31

4. PARALLEL HIERARCHICAL TREE CONSTRUCTION ALGORITHMS ON GPU

tree nodes in a single array structure; but during certain algorithm steps we may be interested

to process or store a specific subset of nodes which may not conserve a contiguous block in

the nodes array; so we use an array of indices to reference such subset of nodes. For example:

the ActiveNodes array is used to refer to currently processed nodes indices in the nodes SoA.

As shown Figure 4.1 the NodeID represents the node index in the nodes SoA, and the Index

represents the index to the ActiveNodes array at which we store the NodeID; that is why we

always assume that ActiveNodes array is referenced by a consecutive integer sequence starting

from 0. The ActiveTriangles is the triangle-node association array at which we store triangles

indices of active nodes and the ActiveParents array stores indices of the ActiveNodes array at

which we store triangles parents NodeID.

0 1 2Index

0 1 2NodeID

0 6 11ActiveNodesStart

6 5 3ActiveNodesSize

0 1 2 3 4 5 6 7 8 9 10 11 12 13ActiveTriangles

0 0 0 0 0 0 1 1 1 1 1 2 2 2ActiveParents References index elements

Figure 4.1: Active nodes and associated triangles indices.

In next sections we review recent state of the art BFS tree construction algorithms on GPU

presented in [Lauterbach et al., 2009; Zhou et al., 2008] using our proposed API, and present

our new algorithms for building binned SAH BVH.

4.4 Parallel SAH KD-tree Construction Algorithm

In [Zhou et al., 2008] Zhou et al. presented a fast parallel KD-tree algorithm which builds tree

hierarchy on GPU in BFS order. The algorithm classifies tree nodes into large and small nodes,

and uses different split strategies for each category. A node is considered large if its triangles

are greater than a predefined threshold T, otherwise, it is considered a small node. The main

construction pipeline starts with the root node and builds the hierarchy in two main stages:

(i) large node stage in which we split all large nodes using simple and inexpensive split cost

evaluation methods; and (ii) small node stage in which we split small nodes after splitting all

32

4.4 Parallel SAH KD-tree Construction Algorithm

large nodes employing an approximate SAH cost evaluation for node splits. In this section we

explain the main processing steps of this algorithm.

4.4.1 Large Node Stage

In this stage we start with the root node and process all large nodes in six main steps: (1)

divide node’s triangles into fixed size chunks; (2) compute the bounding box of all nodes using

standard and segmented reduction on the chunks data; (3) split nodes; (4) sort triangles to child

nodes; (5) filter child nodes into large and small nodes; (6) clip and distribute triangles to child

nodes. Then we return to step 1 if we still have large nodes or go to next stage if not. Since

large nodes appear at the higher tree levels; it is better to use simple and inexpensive heuristics

based on “empty space” maximizing [Havran, 2000] and spatial median [Wald, 2007] for node

splits.

Step 1: Dividing Node’s Triangles into Fixed Size Chunks.

To divide triangles of each node into fixed dized chunks of at most T triangles we apply the

CreateChunks utility explained in Appendix B on ActiveNodes data. Figure 4.2 shows the

resulting chunks data structure of our running example.

0 1 2NodeIndex

0 6 11ActiveNodesStart

6 5 3ActiveNodesSize

0 0 1 1 2ChunksOwner

0 4 6 10 11ChunksStart

4 2 4 1 3ChunksSize

Figure 4.2: Dividing node’s triangles into fixed sized chunks of at most 4 triangles.

Step 2: Computing Nodes Bounding Box.

First, we customize the Reduce utility to reduce the bounding boxes of all triangles in a single

chunk in parallel. This utility takes as an input the chunk range from ChunksStart, and Chunks-

Size arrays and consider the identity element for an Axis Aligned Bounding Box (AABB)

(Bt) as [∞,−∞] and the reduction operation between two AABBs (B1,B2) as [min(B1.min,

33

4. PARALLEL HIERARCHICAL TREE CONSTRUCTION ALGORITHMS ON GPU

B2.min), max(B1.max, B2.max)]. Then we invoke a nested parallel call for this utility to cal-

culate the bounding boxes of all chunks in parallel into array ChunksAABBs, and call a cus-

tomized version for AABBs of the SegmentedReduction utility to calculate nodes AABBs by

considering ChunksAABBs as the input elements and ChunksOwner as the Owner array.

Step 3: Splitting Nodes.

To account for both “empty space” maximization and spatial median as the splitting criteria for

large nodes we keep two bounding boxes for each node; the tight bounding box (Bt) calculated

in the previous step, and the inherited bounding box (Bi) which recursively inherits split planes

from its parent nodes starting with the scene AABB at the root node.

We calculate the “empty space” as the difference between the two bounding boxes at each of

their 6 side planes. If the “empty space” at certain side is greater than a predefined threshold

Ce relative to the corresponding axis then we split this node at the tight bounding box position

into two child nodes; an empty node and an inherited node which inherits both the parent node

primitives and its tight bounding box Bt.

To parallelize this step we make an operator that processes all nodes in parallel. In this operator

we count for each node the number of sides that pass the “empty space” threshold and store

this count into array NumEmptyNodes, we also make a 6 bits mask for each node into which

we set bit i if the corresponding side passes the “empty space” threshold, where i ∈ [0 − 5]

and corresponds to min and max sides for the x, y, and z axes respectively, we store these

masks into array EmptySides. After calling this operator we perform an exclusive scan to the

NumEmptyNodes array using the scan utility (see Figure 4.3).

1011 0000 0101EmptySides

3 0 2N=NumEmptyNodes

0 3 3Scan(N)

Figure 4.3: Empty space calculation.

Once we scanned the number of empty nodes we make an operator that splits all nodes in paral-

lel. In this operator, given a node N at index i in the AvtiveNodes array we get the start address

34

4.4 Parallel SAH KD-tree Construction Algorithm

of its children using the scan of the NumEmptyNodes array as 2Scan(NumEmptyNodes)[i]+

2i and use the corresponding bit mask in the EmptySides array to create empty and inherited

nodes and then we split the lowest inherited node at the spatial median into two child nodes

and store them into positions 2i, 2i+ 1 in the ChildNodes array (see Figure 4.4).

0

3 4

5 6

7 8

1 2

13 14

15 16

9 10 11 12 17 18ChildNodes

Figure 4.4: Large nodes splitting.

Step 4: Sorting Triangles to Child Nodes.

We prepare two arrays of flags (Left, and Both) equal in size to the ActiveTriangles array and

make an operator which sorts triangles of a single chunk to the new child nodes in parallel. This

operator takes as an input the chunk data from ChunksStart, ChunksSize, and ChunksOwner

arrays and fills in the Left and Both array elements corresponding to the chunk range. In this

operator we check the triangle against its parent node split plane (a triangle can access its parent

node using the ChunksOwner element) and store into the corresponding Left, and Both array

elements: 1, and 0 if the triangle lies to the left of the split plane; 0, and 0 if it lies to the right

of split plane; and 1, and 1 if it is straddling the split plane.

We invoke a nested parallel call to this operator to sort triangles of all chunks, and call the Scan

utility to perform a exclusive scan for the Left, and Both arrays. Then we call SegScanTails

utility employing ActiveNodesStart and ActiveNodesSize as the HeadIndices and the Size ar-

guments respectively and store the scan tails of Left, and Both arrays into LeftScanTails, and

BothScanTails arrays respectively (see Figure 4.5).

35

4. PARALLEL HIERARCHICAL TREE CONSTRUCTION ALGORITHMS ON GPU

0 1 2Index

0 1 2NodeID

0 6 11NS=ActiveNodesStart

6 5 3NZ=ActiveNodesSize

0 0 1 1 2ChunksOwner

0 4 6 10 11ChunksStart

4 2 4 1 3ChunksSize

0 1 2 3 4 5 6 7 8 9 10 11 12 13ActiveTriangles

0 1 1 1 1 1 0 1 1 0 0 1 1 0L=Left

0 0 1 2 3 4 5 5 6 7 7 7 8 9LS=Scan(L)

5 2 2LST=SegScanTails(L,LS,NS,NZ) 1 3 1⇒RST = NS − LST

0 1 0 0 0 0 0 1 1 0 0 0 0 0B=Both

0 0 1 1 1 1 1 1 2 3 3 3 3 3BS=Scan(B)

1 2 0BST=SegScanTails(B,BS,NS,NZ)

Figure 4.5: Sorting KD-tree triangles to child nodes using two flags arrays.

Step 5: Filtering Large/Small Nodes.

In this step we make an operator to process nodes of ActiveNodes array in parallel and fill

both the ChildNodesSize array into which we store the size of each child node and the Large

flags array into which we store 1 if the corresponding child node size is greater than triangles

threshold T, and 0 otherwise (both arrays have length equals 2N, where N is the length of

ActiveNodes array). Given a parent node at index i in the ActiveNodes array we fill its left child

node size at index 2i as LeftScanTails[i], and fill its right child node size at index 2i + 1 as

ActiveNodesSize[i] - LeftScanTails[i] + BothScanTails[i], we also fill the Large flags array by

comparing the child node size against T.

We call the Split utility employing Large flags array as the Flags array to split ChildNodes into

NextNodes and SmallNodes, and split ChildNodesSize into NextNodesSize and SmallNodes-

36

4.4 Parallel SAH KD-tree Construction Algorithm

Size. Then we perform an exclusive scan for both NextNodesSize and SmallNodesSize arrays to

get NextNodesStart and SmallNodesStart arrays respectively (see Figure 4.6). We update the

SmallNodesStart array by adding to each element the number of previously stored small trian-

gles in order to reflect the correct position of their triangles after appending new small triangles

to previously stored ones. Then we append the SmallNodes SoA to the previously stored small

nodes for later processing.

3 4 5 6 7 8ChildNodes

5 2 2LST 1 3 1RST 1 2 0BST

5 2 2 5 2 1ChildNodesSize

1 0 0 1 0 0L=Large Scan⇒ 0 1 1 1 2 2LS

Split(<ChildNodes, ChildNodesSize>) using Large

3 6NextNodes · · · 4 5 7 8SmallNodes

5 5NextNodesSize · · · 2 2 2 1SmallNodesSize

Scan(<NextNodesSize, SmallNodesSize>)

0 5NextNodesStart + 0 2 4 6SmallNodesStart

Figure 4.6: Large/Small nodes filtering, in this example we assume that the node thrshold T equals
4.

Step 6: Clipping and Distributing Triangles to Child Nodes.

Consider a triangle t at index i in a parent node N with a start index SatrtN , and a size SizeN

which is split into a left child node NL with a start index StartL, and a right child node NR with

a start index StartR. Using Left, and Both arrays a triangle t may be: (1) sorted to left child

node only if Left[i] = 1, and Both[i]=0; (2) sorted to right child node only if Left[i] = 0, and

Both[i]=0, or (3) clipped and sorted to both child nodes if Left[i] = 1, and Both[i]=1. And the

child node (NL, or NR) may be classified as a large node or a small node and accordingly its

triangles must be stored in its corresponding triangles indices arrays.

To sort a triangle t we start by finding its new parent node NL, and/or NR, then we sort the

triangle into the corresponding triangles array at an address defined by the child node start

address plus a local offset calculated using the scans of Left, and Both arrays . We define

3 local offset addresses for a triangle t : (1) OffsetL which represents the number of ones

37

4. PARALLEL HIERARCHICAL TREE CONSTRUCTION ALGORITHMS ON GPU

preceding it in Left array and is calculated as Scan(Left)[i] - Scan(Left)[SrartN]; (2) OffsetR

which represents the number of zeros preceding it in Left array and is calculated as i - StartN -

OffsetL; and (3) OffsetB which represents the number of ones preceding it in Both array and is

calculated as Scan(Both)[i] - Scan(Both)[SrartN].

0 1 2Node

0 1 2 3 4 5 6 7 8 9 10 11 12 13ActiveTriangles

0 1 1 1 1 1 0 1 1 0 0 1 1 0L

0 1 0 0 0 0 0 1 1 0 0 0 0 0B

0 0 1 2 3 4 5 5 6 7 7 7 8 9LS

0 0 1 1 1 1 1 1 2 3 3 3 3 3BS

0 1 2 3 4 0 1 0 1OffsetL

0 0 0 1 1 1 2 1OffsetR

0 0 0 0 1 2 2 0OffsetB

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6+NewAddr.

1 2 3 4 5 6 7 8 9 10 0 1 7 8 11 12 13· · ·NextTri. SmallTri.

0 5NextNodesStart 0 2 4 6+SmallNodesStart

3 6LargeNode 4 5 7 8· · ·SmallNodes

Figure 4.7: Clipping and distributing triangles to child nodes.

We distinguish 8 distinct cases for a triangle distributing (see Figure 4.7):

1. Triangle t goes to the left child node NL only where:

(a) NL is a large node; then we store t at index StartL + OffsetL in the NextTraingles

array.

(b) NL is a small node; then we store t at index StartL + OffsetL in the SmallTraingles

array.

2. Triangle t goes to the right child node NR only where:

38

4.4 Parallel SAH KD-tree Construction Algorithm

(a) NR is a large node; then we store t at index StartR + OffsetR + OffsetB in the

NextTraingles array.

(b) NR is a small node; then we store t at index StartR + OffsetR + OffsetB in the

SmallTraingles array.

3. Triangle t goes to both child nodes NL, and NR where:

(a) NL is a large node and NR is a large node; then we clip and store t at indices StartL

+ OffsetL and StartR + OffsetR + OffsetB in the NextTraingles array.

(b) NL is a large node and NR is a small node; then we clip and store t at index StartL

+ OffsetL in the NextTraingles array and at index StartR + OffsetR + OffsetB in the

SmallTraingles array.

(c) NL is a small node and NR is a large node; then we clip and store t at index StartL

+ OffsetL in the SmallTraingles array and at index StartR + OffsetR + OffsetB in

the NextTraingles array.

(d) NL is a small node and NR is a small node; then we clip and store t at indices

StartL+ OffsetL and StartR + OffsetR + OffsetB in the SmallTraingles array.

Similar to triangles sorting we create an operator which handle the previously stated cases for

a triangle and distribute all triangles of a single chunk in parallel, and then we make a nested

parallel call to this operator to distribute triangles of all chunks.

After finishing this step we check if we still have large nodes in the NextNodes array then we

swap NextNodes SoA and ActiveNodes SoA and their triangles association arrays and return

to step 1 of the large node stage, otherwise we go to the small node stage after swapping

SmallNodes SoA and ActiveNodes SoA and their triangles association arrays and proceed to

next stage.

4.4.2 Small Node Stage

In this stage we still process nodes in BFS order but we employ an approximate SAH without

triangles clipping as cost estimation for node splits. We begin with a preprocessing step in

which we enumerate all split candidates in each node. Then we process nodes in two main

steps: (1) evaluate the SAH at all split candidates in each node, then select the minimum SAH

39

4. PARALLEL HIERARCHICAL TREE CONSTRUCTION ALGORITHMS ON GPU

using standard reduction and compare the minimum SAH with the cost of not splitting the node

to either split the node or mark it as a leaf; (2) for each split node we sort triangles to child

nodes. We return to step 1 of the small stage if we still have new child nodes.

Preprocessing Small Nodes.

In this step we prepare small roots which correspond to all small nodes with large parent nodes.

Each small root defines the start triangle address index in the ActiveTriangles array and the

number of the triangles Nt (where 0 < Nt ≤ T) and lists all split candidates defined by the 6

side planes of each triangle AABB. The split candidate is defined by split axis, split position,

left and right triangles sets where each set is represented using a T bits mask [Zhou et al.,

2008].

To create small roots we prepare struct of array (SoA) for splits which consists of three arrays:

SplitPosition in which we store the split positions, LeftSet in which we store the T bits masks

of the left triangles sets, and RightSet in which we store the T bits masks of the right triangles

sets and each of these arrays are of size equals 6N where N is the total number of triangles in

all small nodes.

We make an operator that processes the triangles of each small node in parallel. In this operator,

given a triangle t at index i we store its 6 side positions, left, and right triangles sets staring at

index 6i into arrays SplitPosition, LeftSet, and RightSet respectively. The left and right triangles

sets are created by comparing the candidate position against all other triangles in the node. We

make a nested parallel call to this operator to prepare the split candidates for all small roots

(see Figure 4.8).

40

4.4 Parallel SAH KD-tree Construction Algorithm

0 1 2 3 · · ·Index

4 5 7 8 · · ·NodeID

0 2 4 6 · · ·ActiveNodesStart

2 2 2 1 · · ·ActiveNodesSize

0 8 16 24 · · ·ActiveNodesSplitIndex

0 8 16 17 18 19 20 21 22 23 24 · · ·SplitIndex

· · · · · · 0 1 0 1 0 1 0 1 · · · · · ·SplitAxis

· · · · · · 1 2 4 6 5 1 9 8 · · · · · ·SplitPos

· · · · · · 0000 0010 0001 0011 0001 0000 0011 0011 · · · · · ·LeftSet

· · · · · · 0011 0011 0010 0010 0010 0011 0000 0000 · · · · · ·RightSet

0
1

0
2
4
6
8
10

2 4 6 8 10

Figure 4.8: Small roots and related splits.

We modify the small nodes structure a little bit (see Figure 4.9). Instead of defining the triangles

of a node by the start triangle index and number of triangles we define them by an index to

the small root and a T bits mask NodeTrianglesSet representing the triangles set in the node

relative to small root start triangle index, for a node with Nt triangles this mask is initialized to

(1 << Nt)− 1.

0 1 2 3Index

4 5 7 8NodeID

0 1 2 3SmallRootIndex

0011 0011 0011 0001NodeTrianglesSet

Figure 4.9: Small nodes modified structure, small node size is at most 4 primitives.

Step 1: Evaluating Node SAH Cost.

41

4. PARALLEL HIERARCHICAL TREE CONSTRUCTION ALGORITHMS ON GPU

We make an operator that processes 6T split candidates (si) for each small node in parallel

where (si ∈ [0, 6T)). In this operator we get the node’s triangles set mask from the (NodeTri-

anglesSet) array and if a split si exist in the triangle set (bit si/6 is set to 1 in the mask) then

we get split position, left triangle set mask (LeftSet) and right triangle set mask (RightSet) form

the small root, the split axis is defined implicitly by the split index si%3, and evaluate the SAH

cost as:

SAHsi = CT +
CI

SAN
(NL(si)SAL(si) +NR(si)SAR(si))

Where CT is the cost of node traversal, CI is the cost of triangle intersection, NL(si), NR(si)

are the number of triangles lying to the left and to the right of the split respectively; NL(si)

is calculated as the bit count of the LeftSet anded with the NodeTrianglesSet and NR(si) is

calculated as the bit count of the RightSet anded with the NodeTrianglesSet, SAN is the surface

area of node AABB, and SAL(si), SAR(si) are the surface area of the child nodes AABBs

resulting from splitting the parent node AABB with the plane defined by the split candidate. We

make a nested parallel call to this operator to process all nodes in parallel. We also customize

the reduction utility to reduce the 6T values of each node and return the minimum SAH value

and its corresponding split index, and make a nested parallel call to this utility to select the

minimums SAH cost for each node.

0 1 2 3Index

4 5 7 8NodeID

1 11 18 26BestSplit

0 2 2 0S=Split

0 0 2 4SS = Scan(S)

0 1 2 3SmallRootIndex

0011 0011 0011 0011NodeTrianglesSet

0001 0010 0010 0001Left/Right Set

9 10 11 12ChildNodes

1 1 2 2SmallRootIndex

0001 0010 0010 0001NodeTrianglesSet

Figure 4.10: Small nodes splitting.

42

4.5 Parallel SAH BVH Construction

We prepare an array for Split flags equal in size to ActiveNodes array, into this array we store

2 if the corresponding node will be split and 0 otherwise. Once we calculated the minimum

SAH for each node; we compare it with the cost of not splitting the node and store the flags

into Split array. Then we perform an exclusive scan to this array to use it in creating new child

node.

Step 2: Node Split and Triangles Sorting.

This step is relatively simple; we make an operator that processes all node in parallel and create

child nodes. In this operator, given a node at index i in the ActiveNodes we check the flag in

the Split flags array and if it is set then we use the minimum cost split index calculated in

the previous step to get split position, axis, LeftSet and RightSet form the small roots arrays

and create the two child nodes starting at index Scan(Split)[i]. For the child nodes we set the

NodeRootIndex as of the parent node value, and set the triangles set of the left child node as the

bitwise AND between LeftSet and NodeTrianglesSet and set the triangles set of the right child

node as the bitwise AND between RightSet and NodeTrianglesSet and split the parent node

AABB at the split plane into two AABBs for the left and right child nodes, we also mark the

parent node as an internal node and set its child references to refer to the newly created child

nodes (see Figure 4.10).

Finally, we use the new child nodes as the active nodes for the next step; if we have no child

node then the tree construction is complete.

4.5 Parallel SAH BVH Construction

In [Lauterbach et al., 2009] Lauterbach et al. presented an efficient parallel algorithm for con-

structing BVH in BFS order using approximate SAH cost. This algorithm uses two different

split strategies for large and small nodes splits that we refer as the small and large node stages

in this section. Once all large nodes are split; the algorithm runs a special kernel that processes

all small roots and makes use of local processor cache (i.e. shared memory) and wide SIMD

instruction set to creates a complete sub-tree under each small root using full sweep SAH cost

evaluation.

43

4. PARALLEL HIERARCHICAL TREE CONSTRUCTION ALGORITHMS ON GPU

4.5.1 Large Node Stage

This stage begins with the root node and processes all large nodes in five main steps: (1)

evaluates the SAH cost at all split candidates in each node and select the minimum SAH using

standard reduction; (2) compare the minimum SAH with the cost of not splitting the node and

either we split the node or mark it as a leaf node; (3) sort triangles to child nodes; (4) calculate

child nodes size and filter them into large and small nodes; (5) distribute triangles to child

nodes, and either we return to step 1 if we still have large nodes or go to next stage if not.

Step 1: Evaluating Nodes SAH Cost.

In this step we evaluate an approximate SAH cost at k (e.g. 64) uniformly sampled split

positions inside node’s AABB in each of the three axes. We make an operator that evaluates

each of the 3k splits for each node in parallel employing fast shared memory of GPU to load

primitive’s data, and make a nested parallel call to this operator to process all nodes. Then

we customize the reduction utility to work on a single node and select the minimum SAH and

the corresponding split candidate from the 3k values, and make a nested parallel call to this

utility to process all nodes in parallel. We prepare another operator that works for all nodes and

compares the minimum SAH with the cost of not splitting the node. If the minimum SAH cost

is lower than the leaf cost; then we store 1 at the corresponding node index in the Split flags

array, otherwise we store 0 to indicate that this node will be a leaf in the hierarchy.

Step 2: Splitting Nodes.

We scan the Split flags array and use it to split the ActiveNodes and ActiveNodesSize arrays and

get the right side of the split operation in the LeafNodes and LeafNodesSize arrays respectively.

We scan the LeafNodesSize into LeafNodesStart array, and update the LeafNodesStart array by

adding to each element the number of previously stored leaf triangles in order to reflect the

correct position of their triangles after appending new leaf triangles to previously stored ones.

Then we append the LeafNodes SoA to the previously stores leaf nodes. To create new child

nodes we create an operator that check for each node at index i the corresponding value in the

Split array if it is set; then we create two child nodes in the ChildNodes array starting at address

2Scan(Split)[i] (see Figure 4.11).

44

4.5 Parallel SAH BVH Construction

0 1 2 3ActiveNodes

0 5 8 12ActiveNodesStart

5 3 4 3ActiveNodesSize

1 0 1 0S=Split

0 1 1 2SS=Scan(S)

RightSplit(<ActiveNodes, ActiveNodesSize>) using S

1 3· · ·LeafNodes

3 3· · ·LS=LeafNodesSize

0 3+LeafNodesStart = Scan(LS)

Create child nodes using Split flags

4 5 6 7ChildNodes

Figure 4.11: Splitting BVH nodes.

Step 3: Sorting Triangles to Child Nodes.

To parallelize this step over triangles we use the indirection array (ActiveParents) (see Section

4.3) and prepare an operator that can sort all triangles in parallel by filling Left flags array

at which we store 1 at the corresponding triangle index if the triangle classified to left child

node and store 0 otherwise. In this operator we check the value at the parent node index in the

Split flags array; if it is 1 then the node is split and we have to compare the triangle centriod

against the split plane and sore 1 in the Left flags array if the triangle lies to the left of the split

plane or 0 otherwise. We scan the Left flags array and call the SegScanTails utility employing

ActiveNodesStart array as the Start argument and ActiveNodesSize array as the Size argument

and store the results into LeftScanTails array (see Figure 4.12).

45

4. PARALLEL HIERARCHICAL TREE CONSTRUCTION ALGORITHMS ON GPU

0 1 2 3Index

0 1 2 3NodeID

0 5 8 12NS=ActiveNodesStart

5 3 4 3NZ=ActiveNodesSize

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14ActiveTriangles

0 0 0 0 0 1 1 1 2 2 2 2 3 3 3ActiveParents

1 0 1 1 0 0 0 0 0 1 0 0 0 0 0L=LeftFlags

0 1 1 2 3 3 3 3 3 3 4 4 4 4 4LS=Scan(L)

3 - 1 -LST=SegScanTaisl(L,LS,NS,NZ) 2 - 3 -⇒RST = NZ − LST

Figure 4.12: Sorting BVH triangles to child nodes.

Step 4: Filtering Large/Small Nodes.

In this step we make an operator to process ActiveNodes in parallel and fills two arrays;

ChildNodesSize array which store the size of each child node, and Large flags array into which

we store 1 if the child node size is greater than T, and 0 otherwise. Given a node N at in-

dex i with a size SizeN , we check the corresponding index in the Split flags array; if it is

set then we store LeftScanTails[i] as the left child node size at index 2Scan(Split)[i] in the

ChildNodesSize array, and store SizeN - LeftScanTails[i] as the right child node size at index

2Scan(Split)[i]+1 in the ChildNodesSize array. We fill the corresponding indices in the Large

flags array by comparing child node size against T.

We call the split utility employing Large flags array and its scan to split ChildNodes into NextN-

odes and SmallNodes, and to split ChildNodesSize into NextNodesSize and SmallNodesSize.

Then we perform an exclusive scan on NextNodesSize to get NextNodesStart and on SmallN-

odesSize to get SmallNodesStart (see Figure 4.13). We update the SmallNodesStart array by

adding to each element the number of previously stored small triangles in order to reflect the

correct position of their triangles after appending new small triangles to previously stored ones.

Then we append the SmallNodes SoA to the previously stored small nodes for later processing.

46

4.5 Parallel SAH BVH Construction

1 0 1 0S

0 1 1 2SS

3 - 1 -LST 2 - 3 -RST

4 5 6 7ChildNodes

3 2 1 3ChildNodesSize

1 0 0 1L=Large Scan⇒ 0 1 1 1LS

Split(<NextNode, NextNodesSize>) using Large flags

4 7NextNodes 5 6· · ·SmallNodes

3 3NextNodesSize 2 1· · ·SmallNodesSize

Scan(<LargeNodeSize, SmallNodesSize>)

0 3NextNodesStart 0 2+SmallNodesStart

Figure 4.13: Filtering large/Small nodes.

Distributing Triangles to (Child) Nodes.

To sort a triangle we need to know its (new) parent node and the corresponding association list

and store it at an address defined by the node start address and a local offset inside this node.

Similar to the triangles sorting we make an operator that distributes all triangles in parallel.

Consider a triangle t at index i in a parent node N at index Ni with a start index StartN and

a size SizeN . We define 3 local offset addresses for a triangle t : (1) the number of ones

preceding it in Left array OffsetL which is calculated as Scan(Left)[i] - Scan(Left)[SrartN]; (2)

the number of zeros preceding it in Left array OffsetR which is calculated as i - StartN - OffsetL;

and (3) the relative position inside its old parent node OffsetN which is calculated as i - SrartN .

Using the Split flags array a triangle t may be sorted to: (1) a leaf node (Splits[Ni] = 0); or (2)

goes to a new child node (Splits[Ni] = 1), hence, if the triangle is to be stored in a new child

node we use the Left array to determine whether it will be sorted to: (1) left node child (Left[i]

= 1); or (2) right child node (Left[i] = 0).

47

4. PARALLEL HIERARCHICAL TREE CONSTRUCTION ALGORITHMS ON GPU

0 1 2 3Node

1 0 1 0SplitFlag

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14ActiveTriangles

1 0 1 1 0 0 0 0 0 1 0 0 0 0 0L

0 1 1 2 3 3 3 3 3 3 4 4 4 4 4LS

0 1 2 0 1 2OffsetF

0 1 2 0OffsetL

0 1 0 1 2OffsetR

0 1 2 3 4 5 0 1 2+ 0 1 2 3 4 5+New Address

0 2 3 8 10 11NextTri. 1 4 9· · ·SmallTri. 5 6 7 12 13 14· · ·LeafTri.

0 0 0 1 1 1NextParents 0 0 1+SmallPar. 0 0 0 1 1 1+LeafPar.

4 7NextNodesStart 5 6+SmallNodesStart 1 3+LeafNodesStart

4 7LargeNode 5 6· · ·SmallNodes 1 3· · ·LeafNodes

Figure 4.14: Distributing triangles to (child) nodes.

We distinguish 5 distinct cases for a triangle (see Figure 4.14):

1. Triangle t goes to leaf node, then we store t at index StartF + OffsetN in the Leaf-

Traingles array, where StartF is the start index of the leaf node.

2. Triangle t goes to the left child node NL where:

(a) NL is a large node; then we store t at index StartL+OffsetL in the NextTraingles

array.

(b) NL is a small node; then we store t at index StartL +OffsetL in the SmallTrain-

gles array.

3. Triangle t goes to the right child node NR where:

(a) NR is a large node; then we store t at index StartR+OffsetR in the NextTraingles

48

4.5 Parallel SAH BVH Construction

array.

(b) NR is a small node; then we store t at index StartR +OffsetR in the SmallTrain-

gles array.

Similar to triangles sorting we create an operator that processes all triangles in parallel. In

this operator we just handle the previously stated cases for a triangle and update the triangles

parents arrays accordingly. After finishing this step we check if we still have large nodes in

the NextNodes array then we swap the NextNodes and ActiveNodes SoAs and their triangles

association arrays and return to step 1 of the large node stage, otherwise we go to the small

node stage after swapping SmallNodes SoA and ActiveNodes SoAs.

4.5.2 Small Node Stage

In this stage we split all small nodes with size at most T (e.g. 32 threads). We make an operator

that takes a small node and constructs a complete sub-tree rooted at this small node using full

sweep SAH cost in breadth first search (BFS) order. In this operate we maintain a local shared

queue for non-split tree nodes which is initialized with a small root. As long as we still have

nodes in the local queue we pop a tree node N form the queue, for a node with size k we let

each thread i evaluates the 3 SAH cost values for each axis at primitve i centroid and then we

select the minimum of them of these three values. Then we select the minimum SAH value and

corresponding split plane form the k values using the standard reduction and compare this cost

by the cost of not splitting the node; if the minimum SAH cost is less than the leaf cost then

we split the node by local thread 0, and sort and distribute node’s triangles in a way similar to

the large node stage using the k threads, and push the two child nodes in the local nodes queue

by local thread 0. We call this operator with T threads for each small root and make a nested

call for this operate to process all small roots in parallel.

In the small stage we have to make use of the effective register SIMD (i.e. warp size of 32

threads) to evaluate the SAH cost in parallel and make use of local shared memory to load

primitives data in local cache.

49

4. PARALLEL HIERARCHICAL TREE CONSTRUCTION ALGORITHMS ON GPU

4.6 Proposed Parallel Algorithm for Building Binned SAH BVH

In this section we explain the main processing steps of our binned SAH BVH algorithm. The

algorithm consists of n processing stages, where each stage differs only in the nodes size

and accordingly the number of bins for SAH cost evaluation. In each stages we perform 5

main processing iterative steps: (1) project triangles into K bins; (2) relocate node’s triangles

into contiguous sets according to bin number; (3) divide each bin into Fixed-Sized chunks of

triangles and calculate the AABB for each chuck using standard reduction and the bins AABB

using segmented reduction on chunks data; (4) evaluate the SAH at K − 1 split candidates in

each node using data parallel primitives on chunks data then we either split the node or mark

it as a leaf, and filter new child nodes into large nodes belong to current stage and small nodes

belong to further stages; (5) sort triangles to their (new) parent nodes. After finishing each

iteration we return to step 1 if we still have nodes for current stage, otherwise we filter small

nodes to these ready for next stage and those belong to further stages and advance processing

to next stage.

Step 1: Projecting Triangles into Bins.

For each triangle t we calculate its bin number bt using the formula [Wald, 2007]:

bt =
K(1− ε)(ct,a − cbmin,a)

(cbmax,a − cbmin,a)

Where K is the number of bins, ct is the triangle centroid, cb is the the centroid bounds, and a is

the binning axis (i.e. x, y, or z). We prepare K arrays for bin flags (each array of length equals

the number of triangles in the association array). Then we make an operator that projects all

triangles to their bins in parallel. In this operator, given a triangle t at index i which is projected

to bin k we store 1 at index i into bin flags array number k and store 0 at this index in all other

K-1 arrays. Once we projected all triangles we scan all the bin flags arrays and get the scan

tails of each array using the SegScanTails utility employing nodes as the scan segments (see

Figure 4.15).

50

4.6 Proposed Parallel Algorithm for Building Binned SAH BVH

0 1 2Node

0 1 2 3 4 5 6 7 8 9 10 11 12 13ActiveTriangles

1 0 1 1 0 1 1 0 1 1 0 1 1 0BF0=BinFlags0

0 1 1 2 3 3 4 5 5 5 6 6 7 8BFS0=Scan(BF0)

5 1 3BFST0=SegScanTails(BF0,BFS0)

0 1 0 0 1 0 0 1 0 0 1 0 0 1BF1=BinFlags1

0 0 1 1 1 2 2 2 3 3 3 4 4 4BFS1=Scan(BF1)

2 1 2BFST1=SegScanTails(BF1,BFS1)

Figure 4.15: Projection triangles into corresponing bins.

We store all the scan tails into array BinSize, this array store the number of triangles projected

into each bin stored by node index and has length equals NK where N is the current number of

active nodes. Then we scan the BinSize array to use it to sort node’s triangles into contiguous

blocks sorted by bin index(see Figure 4.16).

5 1 3BST0

2 1 2BST1

5 2 1 1 3 2BS=BinSize

0 5 7 8 9 12BinStart=Scan(BS)

0 1 2 3 4 5BinIndex

0 1 0 1 0 1Bin

0 1 2Node

Figure 4.16: Bins SoA calculation.

Step 2: Sorting Triangles to their Bins.

We make an operator that sorts all triangles into a contiguous sets sorted according to bin

51

4. PARALLEL HIERARCHICAL TREE CONSTRUCTION ALGORITHMS ON GPU

number in each node. In this operator given a triangle t at index i which is projected into

bin k and belongs to a parent node N at index Ni with a start address StartN ; we get triangle

start bin address as Scan(BinSize)[Ni × K + k], and get local triangle offset in this bin as

Scan(BinFlagsk)[i] - Scan(BinFlagsk)[StartN], then we store the triangle at an index defined

by its bin start address plus its local offset (see Figure 4.17).

0 1 2Node

0 1 2 3 4 5 6 7 8 9 10 11 12 13ActiveTriangles

1 0 1 1 0 1 1 0 1 1 0 1 1 0BF0

0 1 1 2 3 3 4 5 5 6 7 7 8 8BS0

0 1 2 3 4 0 0 1 2Offset0

0 1 0 0 1 0 0 1 0 0 1 0 0 1BF1

0 0 1 1 1 2 2 2 3 3 3 4 4 4BFS1

0 1 0 0 1Offset1

0 5 1 2 6 3 4 8 7 9 12 10 11 13NewAddress

0 2 3 5 6 1 4 8 7 9 11 12 10 13ActiveTriangles

0 5 7 8 9 12BinStart

0 1 2 3 4 5BinIndex

Figure 4.17: Sorting triangles locally to their respective bins.

Step 2: Calculating per Bin AABB

We divide each bin in each node to Fixed-Sized chunks of triangles. First, we call the Creat-

eChunks utility to fill the ChunksStart and ChunksSize, and Owner arrays employing BinStart

and BinSize arrays as the Start and Size arguments respectively. Then we calculate each chunks

AABB using standard reduction and bins AABB using segmented reduction in a way similar

to the KD-tree algorithm.

In the last processing stage in which we process internal nodes with the smallest size we avoid

52

4.6 Proposed Parallel Algorithm for Building Binned SAH BVH

the use of chunks data structures and perform the segmented reduction process directly on the

triangles array. First, we pass on all triangles and make the Owner array that map each triangle

into its bin; for a triangle t at index i in a parent node at index Ni which is projected to bin kt

we fill its owner as NiK + kt.

Step 4: Splitting Nodes

We compute for each node the minimum split cost by evaluating the SAH cost at K-1 uniformly

sampled positions in the longest node side. This step is relatively simple as the computation is

parallelized over nodes. For each node we run a left and right scans for both bins’ AABBs, and

evaluate the K-1 SAH values in parallel and choose the lowest bin cost using standard reduction

in each node. We compare this cost with the cost of not splitting the node and if the minimum

SAH cost is lower we store 1 in Split flags array, otherwise we store 0.

Then we scan the Split flags array and employ it to split the Nodes and NodesSize arrays and the

get the right side of the split operation as the LeafNodes and LeafNodesSize arrays respectively.

We scan the LeafNodesSize array to get the LeafNodesStart array (see Figure 4.18). We update

the LeafNodesStart array by adding to each element the number of previously stored leaf trian-

gles in order to reflect the correct position of their triangles after appending new leaf triangles

to previously stored ones. Then we append the LeafNodes SoA to the previously stores leaf

nodes.

53

4. PARALLEL HIERARCHICAL TREE CONSTRUCTION ALGORITHMS ON GPU

0 1 2Node

0 7 9ActiveNodesStart

7 2 5ActiveNodesSize

0 1 2 3 4 4Bin

0 5 7 8 9 13BinStart

* * *Min Cost

1 0 1S=Split

0 1 1SS=Scan(S)

RightSplit(<ActiveNodes, ActiveNodesSize>) using S

· · · 1LeafNodes

· · · 2LS=LeafNodesSize

+ 0LeafNodesStart = Scan(LS)

Create child nodes using Split flags

3 4 5 6ChildNodes

5 2 3 2ChildNodeSize

1 0 0 0L=Large(>4) 0 1 1 1Scan(L)

Split(<ChildNodes, ChildNodesSize>) using L

3NextNodes · · · 4 5 6SmallNodes

5NextNodesSize · · · 2 3 2SmallNodesSize

0NextNodesStart + 0 2 5SmallNodesStart

Figure 4.18: Splitting BVH Node.

Then we make an operator to create new child nodes. This operator processes all active node in

parallel, for each node we check the split flag; if it is set then we get the left and right child data

(AABB and triangles count) from the best bin and store them at indices 2Scan(Flags[i]), and

2Scan(Flags[i]) + 1 respectively. We also fill an array for Large flags array into which store

1 if the child node passes the current stage threshold and 0 otherwise. We scan this array and

use it in splitting child nodes into large nodes ready for the next step and small node which are

stored for later processing.

Step 5: Distributing triangles to (Child) Nodes

We make an operator that sorts all triangles in parallel. To sort a triangle t at index i we begin

by finding its parent node; if the parent node is not split then we sort it at index defined by the

54

4.6 Proposed Parallel Algorithm for Building Binned SAH BVH

leaf node start plus its local offset in the parent node, and if it is split then we find its new parent

node and its start address in the corresponding association list and sort it at an index defined

by child node address plus its local offset in the child node. For a triangle t at index i in the

triangles array and which belongs to node N that has a start address StartN we define the local

offset (Offsett) of t as i-StartN . If the node si not split we define its new start address in the

LeafNodesStart array as StartF , and if it is split we define its two child nodes start addresses

as textitStartL and textitStartR for left and right child nodes respectively. If triangle t goes to

left child node we define its local offset in the left child node as OffsetL which si calculated

as i-StartN , and if it goes to right child node we define its local offset in the right child node

as OffsetR which is calculated as i-SplitN , where SplitN is the first triangle index best bin at

which we split the node.

We distinguish 5 distinct cases for a triangle sorting (see Figure 4.19):

1. Triangle t goes to leaf node, then we store t at index StartF + Offsett in the LeafN-

odesTraingles array, where StartF is the start index of the leaf node.

2. Triangle t goes to the left child node (NL) where:

(a) NL is a large node; then we store t at index StartL + OffsetL in the NextNode-

sTraingles array.

(b) NL is a small node; then we store t at index StartL +OffsetL in the SmallNode-

sTraingles array.

3. Triangle t goes to the right child node (NR) where:

(a) NR is a large node; then we store t at index StartR + OffsetR in the NextNode-

sTraingles array.

(b) NR is a small node; then we store t at index StartR +OffsetR in the SmallNode-

sTraingles array.

55

4. PARALLEL HIERARCHICAL TREE CONSTRUCTION ALGORITHMS ON GPU

0 1 2Node

1 0 1Split

0 2 3 5 6 1 4 8 7 9 11 12 10 13ActiveTriangles

0 1 2 3 4 0 1 0 1 0 1 2 3 4Offset

0 1 2 3 4NewAddr. 0 1 2 3 4 5 6+ 0 1+

0 2 3 5 6NextTriangles 1 4 9 11 12 10 13· · ·SmallTri 8 7· · ·LeafTri

0NextNodesStart + 0 2 5SmallNodesStart + 0LeafNodesStart

3NextNodes · · · 4 5 6SmallNodes · · · 1LeafNodes

Figure 4.19: Distributing triangles to (child) nodes

4.6.1 Filtering Next/Further Nodes

After finishing the current stage we filter small nodes and their corresponding triangle into

nodes for the next stage and nodes for further stages. This operation can be done easily by first

filtering the nodes using a Large flags array into which we store 1 in the corresponding element

if the node pass the next stage threshold and 0 otherwise. Then we split the SmallNodes array

using the Large flags array into NextNodes and FurtherNodes, we also apply the same split

operation to the SmallNodeSize to create NextNodesSize and FurtherNodesSize arrays, then

we scan the NextNodesSize and FurtherNodesSize into NextNodesStart and FurtherNodeStart

arrays respectively.

Triangles are also sorted into two association arrays (NextNodeTriangles and FurtherNodeTri-

angles), given a triangle t at index i in a parent node N with a start index SatrtN , we store the

triangle at an address defined by its new parent address SatrtNew plus a local triangle offset in

N which is calculated as i-StartN (see Figure 4.20).

56

4.6 Proposed Parallel Algorithm for Building Binned SAH BVH

1 4 9 11 12 10 13 · · ·SmallTriangles

4 5 6 · · ·SmallNodes

2 3 2 · · ·SmallNodesSize

0 1 0 · · ·L=Large(>2) 0 0 1 · · ·Scan(L)

Split(<SmallNodes, SmallNodesSize>) using L

5 · · ·NextNodes 4 6 · · ·FurtherNodes

3 · · ·NextNodesSize 2 2 · · ·FurtherNodesSize

0 · · ·NextNodesStart 0 2 · · ·FurtherNodesStart

9 11 12 · · · 1 4 10 13 · · ·NextTriangles FurtherTriangles

Figure 4.20: Filtering Next/Further nodes, in this example we use node Next/Further threshold
equals 2.

We consider NextNodes SoA as the ActiveNodes SoA for the new stage and keep FurtherNodes

SoA as the SmallNodes SoA for further processing stages.

4.6.2 Modifications and Extensions

4.6.2.1 Reducing Scan Passes for Triangles Projection.

During triangles projection we apply K simultaneous scans on K arrays to perform a segmented

K split of the triangles array. However, we can perform this split operation by applying log2(K)

sequential scans on a single array of flags [Sengupta et al., 2007]. We begin by projecting each

triangle t into corresponding bin bt, then we perform a segmented split operation log2(K)

times employing the bits of bin index (bt) as the split flags starting form the most to the least

significant bit (see Figure 4.21).

57

4. PARALLEL HIERARCHICAL TREE CONSTRUCTION ALGORITHMS ON GPU

0 1 2Node

0 1 2 3 4 5 6 7 8 9 10 11 12 13Tri

1 0 3 2 1 2 1 0 3 1 2 3 0 1BinIndex

0 0 1 1 0 1 0 0 1 0 1 1 0 0F0 = Flags0

0 0 0 1 2 2 3 3 3 4 4 5 6 6FS0 = Scan(F0)

0 1 0 1 2 2 3 0 0 0 0 1 1 2Offset0

0 1 4 5 2 6 3 7 8 9 12 13 10 11Addr0

0 1 4 6 2 3 5 7 8 9 12 13 10 11Tri

1 0 1 1 3 2 2 0 3 1 0 1 2 3BinIndex

1 0 1 1 1 0 0 0 1 1 0 1 0 1F1 = Flags1

0 1 1 2 3 4 4 4 4 5 6 6 7 7FS1 = Scan(F1)

0 0 1 2 0 0 1 0 0 0 0 1 2 2Offset1

1 0 2 3 6 4 5 7 8 10 9 11 12 13Addr1

1 0 4 6 3 5 2 7 8 12 9 13 10 11Tri

0 1 4 6 7 8 8 8 9 10 12 13BinStart

1 3 2 1 1 0 0 1 1 2 1 1BinSize

0 1 2 3 4 5 6 7 8 9 10 11BinIndex

Figure 4.21: Sorting triangles into 4 bins using 2 sequential scans

This split operation should be stable which means that splits on lower bits must respect the

order produced by higher bits and the most significant bit split must respect the node partitions.

We achieve this stable segmented split by incrementally doubling the node partitions after each

bit split and calculating triangle offset needed for primitive relocation locally as the difference

between the corresponding index in the scanned flags array and the start index of the owner

partitions of the previous partition. The drawback of this method is the excessive memory

bandwidth consumed by the consecutive log2(K) primitives relocations, however form our

experiments we found that the net enhancement of the construction time is about 1 order of

magnitude compared to original method.

58

4.6 Proposed Parallel Algorithm for Building Binned SAH BVH

4.6.2.2 Projecting Triangles using Parallel Sorting.

Since the log2(K) sequential scans is analogue to log2(K) stable radix sort, we can avoid

these scans and the memory bandwidth overhead incurred by primitives relocating using a

single radix sort operation [Satish, Harris, and Garland, 2009b]. For each triangle t we make a

binary code consisting of the parent node index in the highest significant bits and the bin index

(bt) in the lowest log2(K) significant bits, then we perform parallel sorting on these codes

which then reflect the correct primitive projection order (see Figure 4.22). We fill the BinStart

array by examining the sorted pattern of the bin indices and filling the array upon finding two

consecutive different bin indices, this operation is easily done by creating an operator that

test every primitive in parallel. For empty bins we just interpolate the missing values in the

BinStart array from neighboring elements using an operator that processes nodes in parallel,

and the BinSize array is filled by the difference between each two neighboring elements in the

BinStart array.

0 1 2Node

0 1 2 3 4 5 6 7 8 9 10 11 12 13ActiveTriangles

1 0 3 2 1 2 1 0 3 1 2 3 0 1BinIndex

0001 0000 0011 0010 0001 0010 0001 0100 0111 1001 1010 1011 1000 1001BinaryCode

Key value sort using BinaryCode and Triangles indices

0000 0001 0001 0001 0010 0010 0011 0100 0111 1000 1001 1001 1010 1011SortedBinaryCode

1 0 4 6 3 5 2 7 8 12 9 13 10 11ActiveTriangles(Sorted)

0 1 4 6 7 8 8 8 9 10 12 13BinStart

1 3 2 1 1 0 0 1 1 2 1 1BinSize

0 1 2 3 4 5 6 7 8 9 10 11BinIndex

Figure 4.22: Sorting triangles into 4 bins using radix sort

59

4. PARALLEL HIERARCHICAL TREE CONSTRUCTION ALGORITHMS ON GPU

4.7 Linear Bounding Volume Hierarchy (LBVH)

In [Lauterbach et al., 2009] Lauterbach el at. presented a fast BVH construction algorithm

in which he employs a linear ordering based on Morton code and parallel radix sort to build

the hierarchy. To build a hierarchy of depth 3k we create an operator that calculate for each

primitive a 3k Morton code based on primitive centroid inside the scene bounding box, and

call this operator to process all primitives in parallel. Then we sort these keys using a parallel

sorting algorithm (e.g. radix sort). Upon a key observation by Lauterbach el at. [Lauterbach

et al., 2009], if two adjacent keys differ in the most significant bit h then the final tree hierarchy

will have 3k−h splits between these two primitives in all levels h, h+1, · · · , 3k, So we prepare

another operator that examine each adjacent pair of keys and just count the number of splits

between them into array NumSplits. We perform an exclusive scan to the array NumSplits and

get the total number of splits nSplits using the scan tail utility. Then we make an operator

that fill the split pairs [(i, h), (i, h + 1), · · · (i, 3k)] into the splits array, where each split store

the primitive index in the sorted array and the split level in the hierarchy. For each primitive at

index iwe employ the NumSplits array to create the pairs and its scan to find the starting address

for primitive pairs. We sort the splits array using table key-value parallel sorting employing the

split level as the key. Now the sorted list records the splits sorted by tree level followed by

primitive index (i.e. recording splits level by level).

00

01

10

11

00 01 10 11
0000 0010 1000 1010

0010 0011 1001 1011

0100 0110 1100 1110

0101 0111 1101 1111

Figure 4.23: Morton codes generation.

We notice that for n splits al level l splits we will have n + 1 nodes. So if the total number of

splits equals nSplits then we will have nSplits + 3k + 1 nodes in the hierarchy, where the last

term in the previous expression corresponds to the root node. Each split corresponds to two

nodes in the hierarchy; one to the right and one to the left. Thus, to create the tree nodes we

60

4.7 Linear Bounding Volume Hierarchy (LBVH)

map each split to a single tree node (the one to the left) except the last split in each level which

is mapped to two nodes (the left and right ones). Each split at index i (with level l) in the sorted

splits list will create its node at index i + l. It is trivial to note that splits with level 3k will

correspond to the nodes at the leaf level and all other splits will correspond to internal nodes.

0 1 2 3 4 5 6 7i = Tri.

0000 0001 0011 0100 0101 0110 1100 1110Code

1 2 3 1 2 4 2NS=NumSplits

0 1 3 6 7 9 13 15NSS=Scan(NS)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14index

0 1 1 2 2 2 3 4 4 5 5 5 5 6 6i

3 2 3 1 2 3 3 2 3 0 1 2 3 2 3l = level

Sort using l

8 3 9 1 4 10 11 5 12 0 2 6 13 7 14index reflection

9 3 10 1 4 7 11 13 0 2 5 6 8 12 14index (sorted by l)

5 2 5 1 2 4 5 6 0 1 2 3 4 5 6i

0 1 1 2 2 2 2 2 3 3 3 3 3 3 3l

0

1 2

3 4 5

6 7 8 9 10 11

12 13 14 15 16 17 18 19

Level 0

Level 1

Level 2

Level 3

Level 4

Tree nodes

Figure 4.24: LBVH heirarchy emission.

Building the parent child relation is straightforward given the sorted list of splits; consider a

split (h, l) at index i in the sorted splits array which corresponds to two child nodes one to the

61

4. PARALLEL HIERARCHICAL TREE CONSTRUCTION ALGORITHMS ON GPU

left (NL) and one to the right (NR), we get its next split (h + 1, l) in the sorted splits array

and the two corresponding child nodes (CL, CR) and assign CL as the right child of NL, and

CR as the left child of NR. Getting the next split from the current one is easily done using the

sorted list first we get the index of split (h, l) before sort ius, then we increment it by 1 and get

the value in the reflection array at index ius + 1 which corresponds to the position of the split

(h+ 1, l) in sorted splits array. To complete the hierarchy, starting form level 1 we assign first

node in each level as the left child of first node the previous level, and the last node in each

level as the right child of the last node in the previous level.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14index

5 2 5 1 2 4 5 6 0 1 2 3 4 5 6i

0 1 1 2 2 2 2 2 3 3 3 3 3 3 3l

0 1 2 3Splits level

0 1 3 8Level.start

0 2 7 14Level.end

0 1 2 3 4Nodes level

0 1 3 6 12Nodes.start

0 2 5 11 19Nodes.end

Figure 4.25: Sorted splits bounds and correspoinding nodes bound in the hierarchy.

To compute the BVH of the tree nodes we begin by reducing the AABB for all leaf nodes and

traversing the tree in bottom-up order computing the internal node AABBs as the merge of the

left and right child nodes. During this step we also delete singleton nodes by checking the left

and light child nodes if they equal then we skip the child pointer to the parent node directly.

This step is done using the information of the sorted array bounds so that the leaf nodes at levels

3k are store at positions (3k + bounds[3k].start − 3k + bounds[3k].end + 1) and internal

nodes at level (l + bounds[l].start− l + bounds[l].end+ 1).

62

4.8 Analysis and Discussion

0

1 2

3 4

6 14 8 17 18 19

12 13 15 16

Level 0

Level 1

Level 2

Level 3

Level 4

Tree nodes

Figure 4.26: LBVH pruning.

4.7.1 Hybrid binned SAH BVH Algorithm

Similar to [Lauterbach et al., 2009] we employ the LBVH builder to construct the first n tree

levels and use the binned SAH BVH builder to construct the remaining levels. We noticed

that the leaf nodes bounding box calculation is the main bottleneck the LBVH construction

and since at higher tree levels the number of triangles may be large and unbalanced between

nodes, we use the CreateChunks utility to divide triangles of leaf nodes to Fixed-Sized chunks

and use the reduction operator to calculate the AABB of each chunk followed by a segmented

reduction step on the chunks AABBs to create leaf nodes AABBs. The resulting leaf nodes are

first filtered and feed for the binned SAH BVH algorithm builder.

4.8 Analysis and Discussion

We have figured out that the BFS KD-tree and BVH construction algorithms can be reduced to

a small set of parallel primitives on GPU. We assume that we have N nodes to be split which

are stored in an array and that each node references a contiguous block of primitive indices

in another array. The mission for any split procedure is to: (1) split or unsplit each nodes; (2)

distribute the triangles to child nodes; (3) prepare the nodes and their corresponding primitives’

indices for the next processing steps together.

63

4. PARALLEL HIERARCHICAL TREE CONSTRUCTION ALGORITHMS ON GPU

We have discovered that this split operation can be generalized into a set of main consecutive

parallel steps:

1. Partition large nodes into smaller ones.

2. Split nodes and optionally filter split nodes form unsplit nodes.

3. Sort (i.e. classify) primitives at every split node to their new parent nodes and use infor-

mation form triangles sorting to calculate the child nodes size.

4. Optionally filter child nodes to their respective category (e.g. large or small).

5. Use information about parent, split, unsplit, and child nodes to distribute triangles to

their new or old parents.

We explain in more details how each of these steps is mapped to the previously stated algo-

rithms for KD-trees and BVHs. Partitioning Nodes.

To partition nodes into equally-sized sub-nodes we use the create chunks utility. Splitting

Nodes.

For node splitting operation we have to distinguish two distinct cases:

1. Splits that always result in two child nodes as in the KD-tree large node stage.

2. Splits that results in zero or two child nodes as in BVH algorithms.

For the first case that always results in two splits we always prepare an array for child nodes

that has double size of the input nodes array and given an input node at index i in the input

array we store its two children at indices 2i and 2i+1 in the output array. But for second case

which results in zero or two child nodes, we begin by filling a 0/1 flags array aligned with input

nodes array, at the index corresponding to each node we store 1 in flags array if the node will

be split, and store 0 if it will not be split. Then we scan the flags array and the use the flags and

the scan result to extract nodes corresponding to 0 flags as the right part of the split operation

and store them to the leaf nodes. We also use the flags array and it scan we can create the child

nodes; we pass again in parallel on each node if the corresponding flags equals 1 we create the

two child node at indices 2Scan(flags)[i] and 2Scan(flags)[i]+1 in output nodes queue.

Sorting Primitives at Every Split Nodes and Calculating Child Nodes Size.

As for primitives sorting we have to distinguish two distinct cases:

64

4.8 Analysis and Discussion

1. Primitives which are sorted to only one of the child node as in BVHs and point-based

KD-trees.

2. Primitives which are sorted to one or both child nodes as in geometry KD-trees.

For the first case in which a triangle is sorted to only one of child nodes we use a single array

of 1/0 flags where we store 1 in corresponding index to each triangle if the triangle goes to

left child node and store 0 if triangle goes to right child node. This flags array will be used to

split primitives locally in each node by using a standard scan or segmented scan on these flags

employing nodes triangle ownership as the segments of the flags. Such split operation is called

a disjoint binary segmented split. The segmented scan tails of the flags array corresponding to

left child nodes size, and for each parent node the size of its right child node is calculated as

difference between its size and its corresponding scan tail.

In some cases primitives may be already sorted as in the binned SAH algorithm where the

primitives were sorted to their respective bins and in point based KD-tree as we will see later,

thus in such case we have no need to use flags array to classify primitives. Instead we just need

to determine the splitting primitives in such sorted sequence.

For the second in which a triangle is sorted to only one or two of child nodes we use a two array

of 1/0 flags where we store [1, 0] in corresponding index to each triangle in the two arrays if

the triangle goes to left child node only and store [0, 0] in the two arrays if triangle goes to

right child node only, and [1, 1] in the two arrays if triangle goes to both child nodes. This flags

array will be used to split primitives locally in each node by using a standard scan or segmented

scan on these flags employing nodes triangle ownership as the segments of the flags. Such split

operation is called an overlapped binary segmented split. For each parent node the size of its

left child node is calculated as the corresponding value at segmented scan tail of first flags array

and the size of its right child node is calculated as sum of corresponding segmented scan tail

of second flags array and difference between its size and its corresponding scan tail of the first

array.

Filtering Child Nodes to their Node Category.

For two node categories as in large/small node filtering of KD-tree and BVH large stage, and

binned BVH stage node filtering we have to divide this step into several parallel steps; First we

use a single flags array to classify nodes and their corresponding size to large or small category;

then, we scan each of size array corresponding to each category which will be used to locate

65

4. PARALLEL HIERARCHICAL TREE CONSTRUCTION ALGORITHMS ON GPU

triangles; Finally, we distribute a triangle by first checking its parent node category in the flags

array to determine the corresponding association array and finding its parent node start and

store it at index defined by the sum of its new parent start index plus the its local offset in its

parent node.

For more than two node categories we can k flags arrays for k nodes categories to filter the

nodes and the triangles sorting is identical to the two categories case. This is identical to

what was supposed in the our proposed binned SAH BVH algorithm, but, since node filtering

operation will require k parallel scans which may be a bottleneck we chose to filter the node

using a single flags array into nodes belong to category 1 which are read for current processing

stage and nodes belong to other category, and then after finishing each processing stage we

again split nodes into nodes belong to next stage and nodes belongs to all further stages.

Distributing Triangles to (Child) Nodes.

Similar to primitives step sorting we have to distinguish two distinct cases:

1. Primitives which are distributed to only one of the child node as in binned BVH next/-

further node filtering and point-based KD-tree and primitives by be sorted to leaf nodes

as in BVHs node splitting step.

2. Primitives which are distributed to one or both child nodes as in geometry KD-trees.

In the first case we first check whether the parent node is split or node by examining the cor-

responding split flag; if the node is not split then we find leaf node and its corresponding start

index using the scan of the split flags, and sort the primitive at an index defined by the leaf node

start index plus its local offset in its old parent node. On the other hand, if the parent node is

split and the primitive is sorted to one child node we use the flags array prepared in the triangle

sorting step to find the parent child node category, then we check the corresponding flag of

this node in the category flags array prepared in node filtering step to find the corresponding

primitives association array and use the scan of the category flags array to find the start node

index, then we sort a primitive at an index defined by the sum of the new parent node index and

the scan of the classification flags; where left-child triangles use the local running scan of ones

and the right-child triangles use the local running scan of zeros.

In the second stage where we sort primitives one or two child nodes we use the two arrays of

falgs prepared in the triangles sorting step to find the new parent nodes: [l,0] means left child

node only; [0,0] means right child node only; and [l,1] means both child nodes, then for every

66

4.9 Evalutions and Comparisons of Proposed Proposed Tree Construction Algorithms

primitives sorted to left child node we store it at index defined by its parent node index plus

an offset defined by the local running scan of ones the first flags array, and for every primitive

sorted to right child node we store it at index defined by start node index plus the local running

scan of zeros the first flags array and the local running scan of ones the second flags array.

4.9 Evalutions and Comparisons of Proposed Proposed Tree Con-
struction Algorithms

Machine specifications. All algorithms were implemented using CUDA programming lan-

guage on a machine with an NVIDIA Geforce 285 GTX with 1 GB memory and a Core 2 Due

processor running at 2.66 GHz. In all algorithms we use the parallel primitives as explained

earlier.

Device memory management. Similar to [Hou et al., 2010] we allocate a large block of

memory for the entire algorithms, and allocate a conservative block for the persistent data

structures which can be calculate in advance such as the final BVH tree structure in the SAH

BVH algorithm which is bounded by 2n− 1 (where n is the number of primitives) due the fact

that the worst case structure result in a leaf node with only one primitives and internal nodes

in binary tree with n leaves is n − 1. During intermediate steps and for temporary date such

as the ping-pong lists we always able to allocate a fixed memory block size for the main poll

which is freed as soon as is not in further use, and for final persistent data structures we can

distinguish two cases; cases in which we know the required memory block size in advance

such as the final tree in the KD-Tree algorithm which impose no constraint in our memory

management, and case in which we can’t calculate the required memory block size in advance

such as the geometry array in the KD-tree algorithm, in such case we reserve a conservative

block of memory relative to the initial scene size and large enough for the entire algorithm.

Model Size Properties
Toasters 11 K Sparse geometry
Bunny 69 K Uniform geometry
Dragon 100 K Uniform geometry
Fairy Forest 178 K Sparse geometry
Exploding Dragon 252 K Sparse geometry

table 4.2: Benchmark scenes used in our experiments.

67

4. PARALLEL HIERARCHICAL TREE CONSTRUCTION ALGORITHMS ON GPU

Benchmark models. In our implementation we use several publicly available benchmark mod-

els which cover the variability of relative scene size, and primitives’ distribution (see Table 3.1)

and to allow the evaluation of our new algorithms and compare it to recent published work (see

Figure 4.27).

Toasters Bunny Dragon Fairy forest
Exploding

dragon

Figure 4.27: Benchmark scenes used to evaluate the construction and rendering performance of
our construction algorithms.

Evaluation metrics. We evaluate and compare our algorithm using the construction time, note

that all timings cover the entire construction process starting with building the initial bounding

boxes, excluding initial CPU-GPU upload of geometry. Although the construction time is an

important factor, its important is closely coupled with resulting tree quality on the ray tracing

performance, so we calculate the heuristic SAH cost as explained in [Pantaleoni and Luebke,

2010] to evaluate the resulting tree quality, note that the smaller value of the SAH the better

tree quality, and vice versa. But since the SAH cost represent the expected cost for a ray

to traverse the entire tree and that SAH is a local greedy measure it is no strict correlation

to the ray tracing time; so we measure both the ray tracing time for the camera ray and the

accumulated construction and tracing time. We also compare the final tree size and the final

memory footprint and the memory peak for all algorithms.

Model Const. R. Cast Const.+Trace SAH Tree Size
time / fps time / fps time / fps # nodes/mem. size

Toasters 41 ms / 24 38 ms / 27 79 ms / 13 128 1789 / 0.5 MB
Bunny 74 ms / 14 71 ms / 14 145 ms / 7 150 133703 / 2.3 MB
Dragon 104.6 ms / 9.5 48.3 ms / 20.7 152.8 ms / 6.5 184 169693 / 3.2 MB
Fairy Forest 195.1 ms / 5.1 94.9 ms / 10.5 290 ms / 3.4 149 309379 / 7 MB
Exploding Dragon 195.1 ms / 5.1 76.2 ms / 13.1 271.3 ms / 3.7 171 435973 / 8.09 MB

table 4.3: KD-tree build time, ray casting, and tree quality statistics for our test scenes.

68

4.9 Evalutions and Comparisons of Proposed Proposed Tree Construction Algorithms

Model # small roots Initial memory size
Toasters 701 3.5 MB
Bunny 2457 13.1 MB
Dragon 4399 21.5 MB
Fairy Forest 10751 53.9 MB
Exploding Dragon 10231 52 MB

table 4.4: Number of small roots and initial memory size.

Primary Rays Generation and Assignment to GPU Threads. In SIMT machines each warp

of 32 threads follow the same execution path which means that the machine first find various

execution branches for the warp and sequentially execute each branch separately. Threads that

does not follow a certain branch remains idle while other threads execute their own branches.

Ray traversal present a complex pattern of execution branching in which the ray oscillate be-

tween hierarchal traversal and primitive intersection in an unpredictable sequence. So in a

single warp unless all rays needs to do the same action (hierarchal traversal or primitive inter-

section), some threads (e.g. traversing the hierarchy) have to remain idle until other threads

(e.g. testing intersection with primitives) finish their execution branch. Since spatially co-

herent rays [Aila and Laine, 2009; Gunther, Popov, Seidel, and Slusallek, 2007; Wald et al.,

2001] most probably will follow similar traversal path in a 3D scene; Morton order (or Z-order

curve) [BIALLY, 1969] 1 ray assignment will be an efficient way for rays assignment to CUDA

threads. For a screen of width W and height H we generate N rays, where N = WH and as-

sign each ray to a single thread. As shown in Figure 4.28 we assign rays to threads according to

z-order where spatially coherent rays traverse neighbor pixels in the screen which are marked

by similar colors.

Since each ray has a one to one correspondence to screen pixels, we assume that each ray (Ri)

has an index i equal to screen location where (i ∈ [0, N)). To efficiently assign rays to threads

we pre-create an array of integer values (IdxToPos) that maps each thread index (tid ∈ [0, N))

to a ray index i. So given a thread (tid) we get its ray index as i = IdxToPos[tid] and then we

calculate the corresponding screen position (y = i/w, x = i%w) and generate a ray through

this pixel using our camera. We also pre-create anther array (PosToIdx) to be sued later in the

shading step, and which do the reverse mapping and translate a screen position to a ray index

1Also known as space filling curve

69

4. PARALLEL HIERARCHICAL TREE CONSTRUCTION ALGORITHMS ON GPU

0

0

1

1

2

4

3

5

4

2

5

3

6

6

7

7

8

8

9

9

10

12

11

13

12

10

13

11

14

14

15

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15thread

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15

Rays assignment to threads based on screen order

R0 R1 R4 R5 R2 R3 R6 R7 R8 R9 R12 R13 R10 R11 R14 R15

Rays assignment to threads based on Morton order

0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15IdxToPos

Position to index array that translate thread index to ray index

0 1 2 3 4 5 5 7 8 9 10 11 12 13 14 15PosToIdx

Index to position array that translate ray index to screen position

Figure 4.28: Rays assignment to CUDA threads, in each cell at checkerboard numbers at the top
left corner defines the sequential pixel order, and number in bottom right corner defined the z-order.

in the rays array 1.

Hierarchal traversal and primitives intersection. We uses stack based traversal algorithms

for both KD-Tree [Foley and Sugerman, 2005; Horn, Sugerman, Houston, and Hanrahan, 2007;

Wald, 2004] and BVH [Wald, 2004] and for triangles intersections we used Woop’s unit triangle

intersection test [Woop, Woop]. For the traversal kernel we used the while-while trace method

[Aila and Laine, 2009] since it gives the best performance for the non persistent threads.

Algorithms evaluation. The LBVH has the best construction time (see Table 3.5) for all scenes

but since the LBVH divides the space uniformly the resulting tree quality is comparable to other

methods only in scenes with uniformly distributed primitives such as the Bunny model and fails

in sparsely distributed scenes such as the Toasters model. While the LBVH final tree size is

relatively large due to the many singletons in the hierarchy, recent work by Pantaleoni and

Luebke [Pantaleoni and Luebke, 2010] overcome this issue using a new hierarchy emission.

The KD-Tree algorithm has a relatively fast construction time and good ray tracing perfor-

mance (see Table 3.2) due the fast median node splits as the higher tree levels and the fast SAH

1Out implementation uses this method as it was implemented in the source code of [Aila and Laine, 2009]
paper which is available at the author homepage

70

4.9 Evalutions and Comparisons of Proposed Proposed Tree Construction Algorithms

evaluation using the bit masks for node primitives but our implementation failed to approach

the performance appeared in the original publication [Zhou et al., 2008], we believe that this

due that we avoid primitive clipping and only perform AABB clipping. Wald et al. [Wald and

Havran, 2006] noted that the number of clipped triangles is order of
√
N while we found that

after the large stage the number of clipped triangle is about 2N . The KD-Tree algorithm has

a heavy memory foot print mainly due to the intermediate data structures for the small roots

since each small root with n nodes requires two words to store start primitive index and the size

of the node and 6n splits where each split requires 24 byes (4 bytes of the split axis, 4 bytes

for the split position and 8 bytes for each of the left and right sets) (see Table 3.2). Keeping in

mind that the total splits always greater than the scene due to triangles splitting, this memory

cost is relatively high.

The SAH BVH algorithm is relatively slow due to the many SAH cost evolution in each node,

while the tree quality the best for ray tracing performance (see Table 3.4), to overcome the

construction time limitations the LBVH can be used to quickly build the higher tree levels in

a hybrid algorithm as explained in [Lauterbach et al., 2009] which gives a good cumulative

construction and ray tracing performance (see Table 3.6). Since the original SAH BVH algo-

rithm is not work efficient; our new binned SAH algorithm take this into consideration and

only evaluate the SAH cost once using chunks and share the chunks information using scans

and results in a construction time which is at least an order of magnitude faster that the SAH

BVH algorithm in most scenes (see Table 3.7). To also allow faster build time we use the

LBVH to construction the higher tree levels resulting in a better build time (see Table 3.8).

The memory footprint of the SAH BVH and the binned SAH BVH algorithms and their hybrid

version are relatively small since scene primitives are not split and all intermediate date are

always conservative in input the scene size.

Our binned SAH BVH algorithm give the worst performance in Toasters scene, we believe that

this is due the large triangles in the model which always results in large sub trees and lead to

false split positions in next splits, such problem can be avoided by selecting split candidates

from the bounding box around triangles centroids.

We presented fast and efficient parallel algorithms for building BVH algorithms on GPU. We

compared our new algorithms with the recent state of the art algorithms for building both

KD-tree and BVH on GPU and showed that our algorithm in most scenes outperform these

algorithm in the construction time and the cumulative build time and trace time for the visibility

71

4. PARALLEL HIERARCHICAL TREE CONSTRUCTION ALGORITHMS ON GPU

Model Const. R. Cast Const.+Trace SAH Tree Size
time / fps time / fps time / fps # nodes/mem. size

Toasters 36.9 ms / 27.1 21.3 ms / 46.9 58.2 ms / 17.1 67 17803 / 0.68 MB
Bunny 144.3 ms / 6.9 28.8 ms / 34.7 173.1 ms / 5.8 61 115719 / 4.4 MB
Dragon 219.4 ms / 4.5 23.1 ms / 43.1 242.6 ms / 4.1 82.9 185971 / 7.1 MB
Fairy Forest 522.4 ms / 1.9 48 ms / 20.1 570.4 ms / 1.8 55 262161 / 10 MB
Exploding Dragon 554 ms / 1.8 38 ms / 26.3 593 ms / 1.7 76 464725 / 17.7 MB

table 4.5: SAH BVH build time, ray casting, and tree quality statistics for our test scenes.

Model Const. R. Cast Const.+Trace SAH Tree Size
time / fps time / fps time / fps # nodes/mem. size

Toasters 3 ms / 330 28.3 ms / 35.3 31.3 ms / 31.9 101.962 114297 / 4.3 MB
Bunny 8.5 ms / 117.2 32.9 ms / 30.4 41.4 ms / 24.1 72.6 660731 / 25.2 MB
Dragon 10.9 ms / 91.5 28.3 ms / 35.2 39.3 ms / 25.4 104 854540 / 32.6 MB
Fairy Forest 10.9 ms / 91.1 63.8 ms / 15.6 74.8 ms / 13.4 61.4 351502 / 13.4 MB
Exploding Dragon 19.5 ms / 51.2 46.7 ms / 21.3 66.3 ms / 15 100 1808614 / 68.9931 MB

table 4.6: LBVH build time, ray casting, and tree quality statistics for our test scenes.

Model Const. R. Cast Const.+Trace SAH Tree Size
time / fps time / fps time / fps # nodes/mem. size

Toasters 10.9 ms / 91.6 27.3 ms / 36.6 38.2 ms / 26.2 99 26038 / 0.99 MB
Bunny 29.2 ms / 34.3 32 ms / 31.1 61.3 ms / 16.3 71 129154 / 4.9 MB
Dragon 56.5 ms / 17.7 27.7 ms / 36.1 84.1 ms / 11.9 102 202401 / 7.7 MB
Fairy Forest 195.8 ms / 5.1 52.3 ms / 19.1 248 ms / 4 59.4 269846 / 10.3 MB
Exploding Dragon 127.4 ms / 7.8 43.9 ms / 22.8 171.3 ms / 5.8 96.7 481906 / 18.3 MB

table 4.7: Hybrid SAH BVH build time, ray casting, and tree quality statistics for our test scenes.

Model Const. R. Cast Const.+Trace SAH Tree Size
time / fps time / fps time / fps # nodes/mem. size

Toasters 37.7 ms / 26.4 28.3 ms / 35.7 66 ms / 15 36 4077 / 0.16 MB
Bunny 47.4 ms / 21 31 ms / 32.1 78.5 ms / 12.7 63 42849 / 1.6 MB
Dragon 63.5 ms / 15.7 27.3 ms / 36.6 90.8 ms / 11 85.6 68567 / 2.6 MB
Fairy Forest 94.6 ms / 10.6 147.1 ms / 6.8 241.7 ms / 4.1 58.6 106515 / 4.06 MB
Exploding Dragon 84 ms / 11.9 38.5 ms / 26 122.6 ms / 8.16 79 171529 / 6.5 MB

table 4.8: Binned SAH BVH build time, ray casting, and tree quality statistics for our test scenes
using five stages.

72

4.9 Evalutions and Comparisons of Proposed Proposed Tree Construction Algorithms

Model Const. R. Cast Const.+Trace SAH Tree Size
time / fps time / fps time / fps # nodes/mem. size

Toasters 29.6 ms / 33.8 20 ms / 50 49.6 ms / 20.1 40 3530 / 0.13 MB
Bunny 36.4 ms / 27.4 31 ms / 32.3 67.4 ms / 14.8 73 63879 / 2.4 MB
Dragon 43.2 ms / 23.1 27.3 ms / 36.6 70.5 ms / 14.2 92.6 79537 / 3.0 MB
Fairy Forest 76.3 ms / 13.1 153.2 ms / 6.5 229.5 ms / 4.3 64.6 126502 / 4.9 MB
Exploding Dragon 74 ms / 13.5 42.5 ms / 23.5 116.5 ms / 8.6 89 191437 / 7.3 MB

table 4.9: Hybrid binned SAH BVH build time, ray casting, and tree quality statistics for our test
scenes.

text. We also showed that most of these algorithms can be reducede to a small and standard

set of parallel primitive algorithms. In next chapter we will evaluate our new hierarch in both

Whitted style ray tracing and photon mapping.

73

4. PARALLEL HIERARCHICAL TREE CONSTRUCTION ALGORITHMS ON GPU

74

5

Ray Tracing on GPU

5.1 Parallel Ray Tracing on GPU

As explained earlier a ray tracing algorithm is a recursive procedure that is called to calculate
the shading color reflected at each pixel. Listing 5.1 presents the pseudo code for a general ray
tracer in which we call the trace procedure for each pixel.

f o r e a c h p i x e l
P i ck a r a y from t h e eye t h r o u g h t h i s p i x e l
P i x e l c o l o r = Trace (r a y)

Listing 5.1: Recursive Ray Tracing Algorithm

The trace procedure traverses the ray through the scene and finds the nearest intersection; when
we find an intersection we calculate the shading due to direct lighting using surface properties,
and light source(s). If we hit a specular surface we recursively trace another bounce of reflected
and/or refracted ray(s) and accumulate the returned shading color to the final pixel value. We
refer the readers to the these references [Jensen, 2004; Jensen et al., 2003; Morley and Shirley,
2003; Pharr and Humphreys, 2010] which contain more details about ray tracing and its varia-
tions ray tracing algorithms and their variations 1 .

1 P r o c e d u r e Trace (r a y)
2 {
3 / / s e a r c h t h e n e a r e s t h i t p o i n t w i th s c e n e p r i m i t i v e s
4 h i t p o i n t = F i n d N e a r e s t I n t e r s e c t i o n ()

1The reference [Pharr and Humphreys, 2010] includes source code for a complete physically based renderer
which is available at the book homepage

75

5. RAY TRACING ON GPU

5 c o l o r = RGB(0 , 0 , 0)
6 f o r e a c h (l i g h t s o u r c e)
7 {
8 Trace shadow r a y form h i t p o i n t t o l i g h t s o u r c e
9 i f (shadow r a y i n t e r s e c t s l i g h t s o u r c e)

10 c o l o r += d i r e c t i l l u m i n a t i o n
11 i f (s p e c u l a r)
12 c o l o r += Trace (r e f l e c t e d / r e f r a c t e d r a y (s))
13 }
14 r e t u r n c o l o r
15 }

Listing 5.2: Tracing Ray

Since current versions of CUDA does not support recursion we have to reformulate the recur-
sive trace procedure into an iterative implementation. A naı̈ve iterative trace procedure can be
implemented on GPU by substituting the recursion with a local stack. But such implementa-
tion is expected to perform poorly on GPU since the trace procedure then will result in a large
branching divergence between GPU threads. We found that two important properties of the
trace procedure can help us to build an efficient parallel implementation on GPU: (1) since
the shading color returned form the next bounce(s) is irrelevant from the shading color at the
current hit, then we can make the shading calculation in a separate step after traversing all pri-
mary and secondary rays; (2) In practice we recurs the trace procedure N times, where N is a
relatively small number (e.g. N < 6) which means that we can trace each bounce in parallel in
a breadth-first search order.

A general parallel pipeline for ray tracing on GPU employing the above observations was
introduced by Zhou et al. in [Zhou et al., 2008], where we perform the following steps:

1. Generate and trace primary rays in parallel.

2. Compact and append hits on non-specular surfaces using parallel list compaction.

3. Collect hits on specular surfaces using parallel list compaction and in parallel trace
reflection and/or refraction rays from them.

4. Repeat Step 2 and Step 3 for N bounces.

5. Generate and trace shadow rays and accumulate shading in parallel.

In this section we will explain in more details how we can implement each of these steps
efficiently on GPU.

76

5.1 Parallel Ray Tracing on GPU

Choosing the reflectance model. We use Schlick approximation of the Fresnel reflectance
to simulate refraction through transparent materials. Since we use Fresnel approximation we
expect that every ray hitting a specular surface is expected to bounce at most two rays one
in the mirror like reflection direction for which the returned shading color is weighted by the
reflectivity (Re) coefficient and another ray in the refraction direction for which the returned
shading color is weighted by the transmissive coefficient (Tr = 1- Re).

5.1.1 Parallel Rays Generation and Bouncing

In this section we present a general parallel ray tracing algorithm and implementation details
that support both reflection and refraction of physically based renderer.

1 / / G l oba l Data
2 N / / r a y s a r r a y , number o f r a y s
3 Nodes , NodesLength / / a r r a y o f 4 b y t e s words t o s t o r e t r e e nodes and i t s s i z e
4 D i f f u s e N o d e s D a t a{Tr i , U, V} / / a r r a y o f 4 b y t e s words t o s t o r e t r e e nodes and i t s s i z e
5 R e f l e c t i o n N o d e s D a t a{Tr i , U, V, C h i l d} / / a r r a y o f 4 b y t e s words t o s t o r e t r e e nodes and i t s s i z e
6 R e f r e a c t i o n N o d e s D a t a{Tr i , U, V, Re , C h i l d} / / a r r a y o f 4 b y t e s words t o s t o r e t r e e nodes and i t s s i z e
7 Rays{Org , Di r} / / r a y s a r r a y , number o f r a y s
8 H i t s{T , Tr i , U, V} / / h i t d i s t a n c e , t r i a n g l e id , i t s b a r y c e n t e r s (α, β) o f t h e h i t
9 D i f f u s e F l a g s , D i f f u s e F l a g s S c a n / / a r r a y s f o r d i f f u s e h i t s f l a g s and i t s s can

10 NumBouncedRays , NumBouncedRaysScan / / a r r a y f o r number o f bounced r a y a t t h e h i t and i t s s can
11 TwoBoncedRaysFlags , TwoBoncedRaysFlagsScan / / a r r a y t h a t s t o r e 1 i f t h e h i t bounce two r a y s and i t s s can
12 Di f fuseNodes , D i f f u s e N o d e s L e n g h t / / a r r a y f o r d i f f u s e node i n d i c e s i n t h e t r e e and i t s c o u n t
13 Specu l a rNodes / / a r r a y f o r s p e c u l a r node i n d i c e s i n t h e t r e e
14 S p e c u l a r N o d e s P e r L e v e l / / a r r a y t o s t o r e s p e c u l a r node c o u n t p e r l e v e l
15
16
17 P r o c e d u r e RayTrace ()
18 {
19 / / i n i t i a l i z a t i o n }
20 NumTracedRays = N / / i n i t i a l number o f t r a c e d r a y s
21 TreeNodesCount = 0
22 i n = o u t = 0 / / a d d r e s s f o r i n p u t / o u t p u t r a y s i n r a y s a r r a y
23 pp = 0 / / Ping−Pong v a r i a b l e
24
25 f o r (b =0; b<NumBounces ; b++)
26 {
27 i n = o u t
28 pp = 1 − pp / / f l i p t h e ping−pong v a r i a b l e
29 o u t = pp ∗ NumTracedRays
30
31 / / t r a c e r a y s
32 TraceRays<NumTracedRays>(&Ray [i n])
33
34 / / s can d i f f u s e and s p e c u l a r h i t s
35 Scan(<D i f H i t F l a g S c a n , NumBouncedRaysScan , TwoBoncedRaysFlagScan>, <D i f H i t F l a g , NumBouncedRays ,

TwoBoncedRaysFlag>, NumTracedRays)
36
37 S c a n T a i l (<DifF lagsCoun t , NumBouncedRaysCount , TwoBoncedRaysFlagCount>, <D i f H i t F l a g S c a n , NumBouncedRaysScan

, TwoBoncedRaysFlagScan>, <D i f H i t F l a g , NumBouncedRays , TwoBoncedRaysFlag>, NumTracedRays)
38
39 / / compact d i f f u s e h i t s
40 i f (D i f F l a g s C o u n t > 0)
41 {
42 C o m p a c t D i f f u s e H i t s<NumTracedRays>()
43 DifNodeCount += D i f F l a g s C o u n t
44 }
45
46 / / u p d a t e node c o u n t

77

5. RAY TRACING ON GPU

47 SpecNodesCountPerLeve l [b] += NumTracedRays
48 SpecNodesCountPerLeve l [b +1] += NumSpecNodes [b]
49 TreeNodesCount += NumTracedRays
50
51 i f (NumBouncedRaysCount == 0)
52 {
53 b r e a k
54 }
55
56 / / compact s p e c u l a r h i t s
57 Compac tSpecu l a rH i t s<NumTracedRays>(&Ray [i n] , b)
58 R e f l e c t i o n N o d e C o u n t += NumBouncedRaysCount − 2 ∗ TwoBoncedRaysFlagCount
59 R e f r a c t i o n N o d e C o u n t += TwoBoncedRaysFlagCount
60
61 / / c r e a t e new r a y s
62 i f (i < NumBounces−1)
63 {
64 GenerateNewRays<NumTracedRays>(&Ray [i n] ,& Ray [o u t])
65 }
66
67 NumTracedRays = NumBouncedRaysCount / / new r a y s c o u n t
68 }
69 }

Listing 5.3: Parallel ray tracing algorithm

Data Structures.
Output Data Structures. The output of the algorithm is the rays tree nodes and 3 arrays for
their related data (see below). We also create 2 arrays (DiffuseNodes, SpecularNodes) for each
of the diffuse and specular node indices in the nodes array. And for specular node we also
prepare a small array (SpecularNodesPerLevel) that store the bounding indices of each bounce
in the specular nodes array (this array has length equals the number of bounces of ray tracer).
Transient Data Structures. Initially we need N primary rays, and for secondary rays we
have two options: (1) Either to allocate enough rays for the next bounce which means that we
reserve at most two secondary rays for each primary ray. So given a primary ray Ri at index i
we always reserve indices 2i, 2i+1 in the output buffer for its new bounced rays and later we
remove null rays using the compact utility. (2) Or we count the number of bounced rays in
an integer array (NumBouncedRays) (which has the same size of the rays array) and later we
generate new rays in a compact form using the scan of NumBouncedRays array. We found that
the second option is more efficient than the first from the memory storage perspective, at the
same time we get a similar performance to first option since we keep intermediate values of
ray hit and avoid recalculation of primitives’ intersections. We pre-allocate rays array where
each ray is represented using an origin (Org) and a direction (Dir) and use this array in a
Ping-Pong fashion to store traversed and bounced rays. During ray traversal we temporary
need an array Hits to store hit information including hit distance (T) and primitive data (i.e.
triangle id and barycenter coordinates of the triangle) for each ray hit, this array has length
equals N corresponding to the upper bound of traversed rays at the primary ray traversal stage.
We create 3 arrays (DiffuseFlags, NumBouncedRays, TwoBoncedRaysFlags) that count the

78

5.1 Parallel Ray Tracing on GPU

number of diffuse and non-diffuse hits, and prepare another 3 arrays for the scan of each one,
each of these arrays are of length equals N.

Rays Traversal and Bouncing. A typical pseudo code for a parallel ray tracing algorithm is
presented in Listing 5.3, in which we iterate for an number of bounces NumBounces to sim-
ulate ray traversal, in each iteration we trace current rays in parallel, count diffuse hits using
the array DiffuseHits, and count non-diffuse hits using two arrays: (1) the NumBouncedRays
array which store the number of bounced rays at each hit; And (2) the TwoBoncedRaysFlags
array in which store 1 if the current hit bounces two new rays and 0 otherwise. In next phases
we can look at the two arrays (NumBouncedRays, and TwoBoncedRaysFlags) from different
perspectives:

1. If we are interested only on the number of new bounced rays we use the array Num-
BouncedRays and its scan.

2. If we are interested in the number of specular hits we can use the difference between
NumBouncedRays, and TwoBoncedRaysFlags and their scans.

3. If we are interested in the number of hits that bounces a single ray we use difference
between NumBouncedRays array and the array defined by 2 × TwoBoncedRaysFlags
and their corresponding scans.

4. If we are interested in the number of hits that bounces two rays we use an array defined
by 2 × TwoBoncedRaysFlags and the corresponding scan.

5. If we are interested in the number of rays misses we use the difference between.
1 O p e r a t o r TraceRays (Ray r a y [])
2 {
3 i = Thread Index
4 iRay = r a y [i]
5 i f (iRay h i t s a p r i m i t i v e)
6 {
7 S e t RayT [i] , T r i I d [i] , T r i A l p h a [i] , T r i B e t a [i] / / h i t d i s t a n c e , t r i a n g l e id , α, β of t h e h i t
8 i f (iRay h i t s a d i f f u s e s u r f a c e)
9 {

10 D i f H i t F l a g [i] = 1
11 NumBouncedRays [i] = 0
12 TwoBoncedRaysFlag [i] = 0
13 }
14 e l s e / / r a y h i t s a s p e c u l a r s u r f a c e
15 {
16 D i f H i t F l a g [i] = 0
17 S t o r e t h e number o f bounced r a y s i n NumBouncedRays [i]
18 TwoBoncedRaysFlag [i] = NumBouncedRays [i] − 1
19 }
20 }
21 }

Listing 5.4: Parallel Trace Rays Operator

79

5. RAY TRACING ON GPU

If we found valid diffuse hits using the scan tail of the DiffuseHits array, we append them
to the shading tree using the operator CompactDiffuseHits. And if we found specular hits
we make two steps: (1) We append non-diffuse hits to the shading tree using the operator
CompactSpecularHits; (2) If we are not in the last bounce we generate new rays which will be
traced in the next bounce using the operator GenerateNewRays.

In the procedure GenerateNewRays we check the NumBouncedRays array, if it is greater than 0

we get the hit information for that ray (T, Tri, U, V) to create new rays in the reflection and re-
fraction directions and compact them in the OutRays array using the scan of NumBouncedRays
array.

1 O p e r a t o r GenerateNewRays (Rays , OutRays)
2 {
3 i = Thread Index
4 i f (NumBouncedRays [i] == 2)
5 {
6 Get h i t i n f o from H i t s (T [i] , T r i [i] ,U[i] ,V[i])
7 C r e a t e r e f l e c t i o n r a y (Ray1) and r e f r a c t i o n r a y (Ray2) u s i n g h i t i n f o and Rays [i]
8 o u t A d d r e s s = NumBouncedRaysScan [i]
9 < OutRays [o u t A d d r e s s] , OutRays [o u t A d d r e s s +1] > = < Ray1 , Ray2 >

10 }
11 e l s e i f (NumBouncedRays [i] == 1)
12 {
13 Get h i t i n f o from H i t s (T [i] , T r i [i] ,U[i] ,V[i])
14 C r e a t e r e f l e c t i o n r a y (Ray1) u s i n g h i t i n f o and Rays [i]
15 o u t A d d r e s s = NumBouncedRaysScan [i]
16 OutRays [o u t A d d r e s s] = Ray1
17 }
18 }

Listing 5.5: Generate New Rays Operator

5.1.2 Building Shade Tree

Shade tree is a tree which originates at each pixel and store ray traversal path inside the scene.
In shade tree nodes represent traversed ray hit (or miss) and links corresponding to ray bouncing
between surfaces. Shade trees are important since we perform the shading calculation after
finishing ray traversal pass, so it must include all necessary information to perform the shading
step. In this section we will explain several ways to efficiently organize, store and traverse
shade trees on GPU.

Figure 5.1 represents various examples of shade trees, the tree rooted at node 1 represents
the simplest form of the shading tree with only one node corresponding to a primary ray that
misses the geometry, in such case we just store a state to indicate a ray miss at this node. The
tree rooted at node 2 represents the case when we hit a diffuse surface, so we store in this node
a state to indicate a diffuse ray hit and a reference hit information (e.g.; triangle id, and hit
position). Tree rooted at node 3 represents a single ray bounce through specular reflection in

80

5.1 Parallel Ray Tracing on GPU

3

4

2

1

6
5

7

9

8

1 2 3

4

5

6 7

8 9

Figure 5.1: Shading trees on Cornel box scene: (Right) various forms of shade trees corresponding
to different screen positions (left).

this case the root node contains a state to indicate a ray reflection, and store the primary ray hit
information, and a reference to the next bounced ray (node 4) which itself stores a diffuse hit
information corresponding to the secondary ray hit at the right red wall. The tree rooted at node
5 represents a more complex pattern in which we perform two bounces of ray traversal, primary
ray hit on the refractive sphere results in two new rays, one in the ideal reflection direction (node
6) and the other in the refraction direction (node 7) through the sphere medium. Node 6 which
corresponds to the reflected ray ends at the floor and node 7 bounces again two rays in the
reflection (node 8) and refraction direction (node 9). As you notice the reflection in node 8 is
inside the sphere and will result in two bounced rays again but since we limit the ray traversal
depth to 3 we kill this ray and mark it as a ray miss.

Shade Node Storage. We need to store in each node (1) a state to indicate the hit type, (2) a
reference to the hit information, and in case of ray reflection and refraction we have to store (3)
a reference to child nodes corresponding to child nodes (bounced rays). Each ray can have one
of 4 distinct cases for an intersection: (1) Ray misses geometry; (2) Ray hits a diffuse surface;
(3) Ray hits a specular surface and bounces a single ray; (4) Ray hits a specular surface and
bounces two new rays. So we just need two bits to store each these states which we refer form
now as the HitState. For HitState 0 (ray miss) we needed not to store anything else in the node.
For HitState 1 (diffuse hit) we need to store a reference to hit information (i.e. primitive id, and
barycenter coordinates). For states 2 and 3 (single and double ray bounces) we need to store

81

5. RAY TRACING ON GPU

a single reference to next bounce(s) (i.e. another node(s) in the shade tree) and a reference to
store a reference to(i.e. primitive id, and barycenter coordinates). Note that with state 3 (double
ray bounces) we always store the child nodes beside each other so that a single reference at the
parent node is enough to access the two children.

We store tree nodes in linear array so that the primary rays occupy the first N nodes in the array,
and use the scan primitive to compact the tree nodes corresponding to secondary rays and to
maintain references to hits information and child nodes.

Shade Trees Structure. As we explained earlier the tree node have to store hit state in the
2 MSB of the node and hit information and references to child nodes. So if HitState = 1 we
store the primitive id and barycenter coordinate of the primitive, if HitState = 10 we create
a new node for the new reflected ray and store the primitive id and barycenter coordinate of
the primitive at and a reference to the child node, and if the HitState = 11 we create two new
nodes for the new rays and store the primitive id and barycenter coordinate of the primitive and
Schlick reflectivity coefficient (Re) and a reference to the child nodes.

Initially we make four arrays:

1. Nodes array of 4 bytes words to store tree nodes.

2. DiffuseHitData array to stores the diffuse hit information (i.e. Tri, U, V), which is com-
pacted using the scan of DiffuseHits array.

3. ReflectionHitData array which stores the hit information and an index to the child node
corresponding to the bounced ray and this array is compacted using the difference be-
tween the scans of NumBouncedRays, and TwoBoncedRaysFlags arrays.

4. RefractionHitData which store the hit information and Schlick reflectivity coefficient
(Re) and an index to the first of the two child nodes corresponding to the bounced rays
and this array is compacted using the scan of TwoBoncedRaysFlags array.

And the tree node will be used as follow:

1. bits [31− 30] to store HitState.

2. bits [30− 0] will store a Reference which is translated based on HitState:

(a) If HitState = 00, then it will be unused.

(b) If HitState = 01, then it store an index referencing DiffuseHitData array in which
we store the hit infomation.

82

5.1 Parallel Ray Tracing on GPU

(c) If HitState = 10, then it store an index referencing ReflectionHitData array in which
we store the hit information and a reference to the child node index.

(d) If HitState = 11, then it store an index referencing RefractionHitData array in
which we store the hit information and Schlick reflectivity coefficient (Re) and
a reference to the first of the two child nodes.

HitState

HitState = 00

HitState, HitInfo

HitState = 01

HitState, HitInfo, ChildNode

HitState = 10

HitState, HitInfo , Re, ChildNodes

HitState = 11

⇒

⇒

⇒

⇒

HitState null

HitState Reference

HitState Reference

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

HitState Reference

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

bits[31,30] bits[29,0]

bits[31,30] bits[29,0]

bits[31,30] bits[29,0]

bits[31,30] bits[29,0]

Nodes

Nodes

Nodes

Nodes

· · ·

DiffuseHitsData

PrimId, α, β

· · ·

· · · · · ·

ReflectionHitsData

PrimId, α, β ChildNode

· · · · · ·

· · · · · · · · ·

RefractionHitsData

PrimId, α, β Re ChildNodes

· · · · · · · · ·

Figure 5.2: Shade tree node structure

To complete the tree structure we make an array DiffuseNodes to store the tree nodes indices
with diffuse hit state and compact it using scan of DiffuseHits array, And make an array Spec-
ularNodes to store the tree nodes indices with specular hit state and compact it using the dif-
ference between the scans of NumBouncedRays and TwoBoncedRaysFlags arrays. We make
arrays (SpecularNodesPerLevel) to store the last index of SpecularNodes array for each ray
traversal level. Values stored in SpecularNodesPerLevel are the accumlation of difference be-

83

5. RAY TRACING ON GPU

tween the scan tails of NumBouncedRays and TwoBoncedRaysFlags arrays.
1 O p e r a t o r C o m p a c t D i f f u s e H i t s ()
2 {
3 i = Thread Index
4 i f (D i f f u s e H i t s [i] == 1)
5 {
6 Get h i t i n f o r m a t i o n (T r i I d [i] , T r i A l p h a [i] , T r i B e t a [i])
7 d a t a A d d r e s s = DifNodeCount + D i f H i t F l a g S c a n [i]
8 D i f f u s e H i t s D a t a [d a t a A d d r e s s] = <T r i I d [i] , T r i A l p h a [i] , T r i B e t a [i]>
9 R a y T r e e S t a r t = TreeNodesCount

10 nodeIndex = R a y T r e e S t a r t + i
11 Nodes [nodeIndex]bits[30−0] = d a t a A d d r e s s

12 Nodes [nodeIndex]bits[31−30] = 01

13 D i f f u s e N o d e s [d a t a A d d r e s s] = nodeIndex
14 }
15 }

Listing 5.6: Compact Diffuse Hits Operator

1 O p e r a t o r C o m p a c t S p e c u l a r H i t s (Ray ray , i n t Bounce)
2 {
3 i = Thread Index
4 i f (NumBouncedRays [i] == 1)
5 {
6 Get h i t i n f o r m a t i o n (T r i I d [i] , T r i A l p h a [i] , T r i B e t a [i])
7 R a y T r e e S t a r t = TreeNodesCount
8 c h i l d N o d e I n d e x = R a y T r e e S t a r t + NumTracedRays + NumBouncedRaysScan [i]
9 d a t a A d d r e s s = R e f l e c t i o n N o d e C o u n t + NumBouncedRaysScan [i] − 2∗TwoBoncedRaysFlagScan [i]

10 R e f l e c t i o n H i t s D a t a [d a t a A d d r e s s] = <T r i I d [i] , T r i A l p h a [i] , T r i B e t a [i] , ch i ldNode Index>
11 nodeIndex = R a y T r e e S t a r t + i
12 Nodes [nodeIndex]bits[30−0] = d a t a A d d r e s s

13 Nodes [nodeIndex]bits[31−30] = 10

14 S p e c u l a r N o d e s S t a r t = SpecNodesCountPerLeve l [Bounce]
15 s p e c u l a r N o d e I n d e x = S p e c u l a r N o d e s S t a r t + NumBouncedRaysScan [i] − TwoBoncedRaysFlagScan [i]
16 Specu l a rNodes [s p e c u l a r N o d e I n d e x] = nodeIndex
17 }
18 i f (NumBouncedRays [i] = 2)
19 {
20 Get h i t i n f o r m a t i o n (T r i I d [i] , T r i A l p h a [i] , T r i B e t a [i])
21 C a l c u l a t e r e f l e c t i v i t y c o f f i c i n t (Re) u i s n g h i t i n f o and r a y [i]
22 R a y T r e e S t a r t = TreeNodesCount
23 c h i l d N o d e I n d e x = R a y T r e e S t a r t + NumTracedRays + NumBouncedRaysScan [i]
24 d a t a A d d r e s s = R e f r a c t i o n N o d e C o u n t + TwoBoncedRaysFlagScan [i]
25 R e f l e c t i o n H i t s D a t a [d a t a A d d r e s s] = <T r i I d [i] , T r i A l p h a [i] , T r i B e t a [i] , Re , ch i ldNode Index>}
26 nodeIndex = R a y T r e e S t a r t + i
27 Nodes [nodeIndex]bits[30−0] = d a t a A d d r e s s

28 Nodes [nodeIndex]bits[31−30] = 11

29 S p e c u l a r N o d e s S t a r t = SpecNodesCountPerLeve l [Bounce]
30 s p e c u l a r N o d e I n d e x = S p e c u l a r N o d e s S t a r t + NumBouncedRaysScan [i] − TwoBoncedRaysFlagScan [i]
31 Specu l a rNodes [s p e c u l a r N o d e I n d e x] = nodeIndex
32 }
33 }

Listing 5.7: Compact Specular Hits Operator

5.1.3 Accumulating Shading and Rendering

With this structure shading can be done by traversing each of the first N nodes corresponding
to primary rays using post order tree traversal (see next section). But in next section we will
present an efficient parallel way to traverse the three level by level in bottom up manner. For

84

5.1 Parallel Ray Tracing on GPU

this purpose we need to store the indices of tree nodes corresponding to diffuse hits and specular
hits for each ray traversing level.

Parallel Post Order Shade Trees Traversal.
1 / / G l oba l Data
2 Nodes / / shade t r e e nodes
3 N / / s c r e e n s i z e
4 S u r f a c e / / N s i z e c o l o r b u f f e r f o r s c r e e n
5 / / Loca l Data
6 NodeStack / / node s t a c k
7 C o l o r S t a c k / / c o l o r s t a c k
8
9 P r o c e d u r e Shade ()

10 {
11 Evalua teShadingPO<N>()
12 }

Listing 5.8: Post order shade tree traversal

1 O p e r a t o r Eva lua teShad ingPO ()
2 {
3 i = Thread Index
4 <NodeIndex , NodeSta te> = <osToIdx [i] , 0> / / g e t t h e p r i m a r y r a y index , s t a t e
5 w h i l e (t r u e)
6 {
7 <H i t S t a t e , Re fe rence> = <Tree [NodeIndex]bits[31−30] , Tree [NodeIndex]bits[30−0]>

8 i f (H i t S t a t e == 0) / / c a s e 1 : r a y miss
9 {

10 C o l o r S t a c k . Push (b l a c k)
11 i f (NodeStack . S ize>0)
12 {
13 <NodeIndex , NodeSta te> = NodeStack . Pop () / / pop node
14 }
15 e l s e / / nodes s t a c k emtpy
16 {
17 b r e a k
18 }
19 }
20 e l s e i f (H i t S t a t e == 1) / / c a s e 2 : r a y h i t s
21 {
22 Get H i t I n f o u i s n g R e f e r e n c e
23 C a l c u l a t e D i r e c t L i g h t u s i n g H i t I n f o
24 C o l o r S t a c k . Push (D i r e c t L i g h t)
25 i f (NodeStack . S ize>0)
26 {
27 <NodeIndex , NodeSta te> = NodeStack . Pop () / / pop node
28 }
29 e l s e / / nodes s t a c k emtpy
30 {
31 b r e a k
32 }
33 }
34 e l s e i f (H i t S t a t e = 2) / / c a s e 3 : r a y bounce a s i n g l e r a y
35 {
36 i f (NodeS ta t e = 1) / / n e x t bounce (s) e v a l u a t e d
37 {
38 Get H i t I n f o u i s n g R e f e r e n c e
39 C a l c u l a t e D i r e c t L i g h t u s i n g H i t I n f o
40 Colo r = C o l o r S t a c k . Pop ()
41 C a l c u l a t e I n d i r e c t L i g h t u s i n g D i r e c t L i g h t , H i t I n f o , and Colo r
42 C o l o r S t a c k . Push (I n d i r e c t L i g h t)
43 i f (NodeStack . S ize>0)
44 {
45 <NodeIndex , NodeSta te> = NodeStack . Pop () / / pop node
46 }
47 e l s e / / nodes s t a c k empty

85

5. RAY TRACING ON GPU

48 {
49 b r e a k
50 }
51 }
52 e l s e / / n e x t bounce (s) n o t e v a l u a t e d
53 {
54 NodeStack . Push(<NodeIndex ,2>) / / Push p a r e n t node
55 Get Chi ldNodeIndex u i s n g R e f e r e n c e
56 <NodeIndex , NodeSta te> = <Chi ldNodeIndex ,1> / / move t o c h i l d node
57 }
58 }
59 e l s e / / c a s e 4 : r a y bounce two r a y s
60 {
61 i f (NodeS ta t e = 1) / / n e x t bounce (s) e v a l u a t e d
62 {
63 Get H i t I n f o u i s n g R e f e r e n c e
64 C a l c u l a t e D i r e c t L i g h t u s i n g H i t I n f o
65 C o l o r 1 = C o l o r S t a c k . Pop ()
66 C o l o r 2 = C o l o r S t a c k . Pop ()
67 C a l c u l a t e I n d i r e c t L i g h t u s i n g D i r e c t L i g h t , H i t I n f o , Co lo r 1 , and C o l o r 2
68 C o l o r S t a c k . Push (I n d i r e c t L i g h t)
69 i f (NodeStack . S ize>0)
70 {
71 <NodeIndex , NodeSta te> = NodeStack . Pop () / / pop node
72 }
73 e l s e / / nodes s t a c k empty
74 {
75 b r e a k
76 }
77 }
78 e l s e / / n e x t bounce (s) n o t e v a l u a t e d
79 {
80 NodeStack . Push(<NodeIndex ,1>) / / Push p a r e n t node
81 Get Chi ldNodeIndex u i s n g R e f e r e n c e
82 NodeStack . Push(<Refe rence , Chi ldNodeIndex>) / / Push l e f t c h i l d
83 <NodeIndex , NodeSta te> = <Chi ldNodeIndex +1,1> / / move t o r i g h t c h i l d
84 }
85 }
86 }
87 S u r f a c e [i] = C o l o r S t a c k . Pop () ;
88 }

Listing 5.9: EvaluateShadingPO Operator

In this method we traverse the first N shade trees corresponding to screen pixels in a post order
manner, the roots of these tress are stored in first N locations in the nodes array. Listing 5.9
present the pseudo code for the post order traversal method. We use two stacks ColorStack
to store the color of child nodes that have been evaluated and NodeStack to store the nodes
that have not been evaluated yet. Since we traverse the shade tree nodes in post order manner
we store in each NodeStack entry both the node index in the nodes array and ShadeState to
represent state of the traversed node.

Node ShadeState can be either 0 or 1, a 0 value is the start state of a node and means that the
node children have not been evaluated yet and a 1 value means that node children have been
evaluated the shading color of current node is ready to be accumulated using the ColorStack and
hit information. So given a node to be tested we check both nodes children and ShadeState.
If node has one child node we check the ShadeState if it is 0 then we Push the node index

86

5.2 Results and Dicussion

1 2 3

4

5

6 7

8 9

Figure 5.3: Shade tree post order traversal

and state 1 to the stack and if node state is 1 (which mean that the bounced ray hit has been
evaluated) we evaluate its shading color as the surface reflectance multiplied by top color of
ColorStack (which represents the color at the bounced ray hit). If the node has two children
we check the ShadeState if it is 0 then we Push to the stack both the node index with state 1

and the left child node index with a state 0 and if the node state is 1 (which means that the two
bounced rays’ hits have been evaluated) we evaluate its shading color using the top two color
in ColorStack weighted by Fresnel terms and multiplied by surface reflectance. If the node no
children and represent a diffuse hit we calculate the shading color using the hit information of
the node and Push it to the ColorStack and finally for nodes representing a ray miss we just
Push a zero color to the ColorStack.

Final Rendering

This step is relatively simple, thanks to CUDA runtime which allow us to map device memory
to OpenGL pixel buffer object (PBO). We just send the pixels final colors calculated in the
shade function to the PBO which is rendered directly to screen.

5.2 Results and Dicussion

5.2.1 Ray Tracing Performance

Test Setup. All algorithms were implemented using CUDA programming language on a ma-
chine with an NVIDIA Geforce 285 GTX with 1 GB memory and a Core 2 Due processor
running at 2.66 GHz. We store all data as dynamic lists in linear device memory allocated via
CUDA. We also excluded the memory overhead time form our time computation. We store
all data structures as structure of arrays (SoA). In our implementation we consider the number
of threads per block is 256, and number of block varies according to processed data parallel

87

5. RAY TRACING ON GPU

primitives’ size. All data parallel primitives were called form the CUDPP library [10].

Benchmark Scenes. We tested our algorithm on five publicly available scene which include
small and moderate size scenes up to hundreds kilo triangles. The reference renderings are
shown in Figure 6. Each scene has different complexity; the Fairy Forest model is 145 K.
Triangles and represents a large scene with a sparse geometry, the Toasters model is 11 K.
Triangles and represent a small scene with a sparse geometry, the Dragon model is 100 K.
Triangles, the Cloth on Sphere model is 92 K. Triangles, and the Bunny/Dragon model is 92
K. Triangles, and each of the them represent an approximately uniformly distributed geometry.
Our ray tracer support Phong shading and also support texturing.

Our rendered scenes represent the diverse light passes for a ray tracing algorithm. Figure
5.17-b represent a complex light pass through the Fairy Forest scene including reflection and
transmission in three ray bounces. Figure 5.17-d represents a ray tracing through the Toasters
model using reflection rays using two ray bounces and Figure 5.17-e represent a ray tracing
using a transmission through a refractive surface in the Toasters scene using two ray bounces.
Figures 5.17-a, 5.17-c, 5.17-f, 5.17-g, and 5.17-h represents a single bounce direct lighting of
the Fairy, Dragon, Cloth, and Bunny/Dragon scenes.

Model Average Tracing Time Frame Rate
Fairy Forest (Single Bounce) 50 ms 20 fps

Fairy Forest (Thee Bounces / Reflection, Transmission) 85 ms 11 fps

Toasters (Single Bounce) 26 ms 38 fps

Toasters (Two Bounces/Reflection) 40 ms 25 fps

Toasters (Two Bounces/Refraction) 41 ms 24 fps

Dragon (Single Bounce) 23.1 ms 43.1 fps

Cloth on Sphere (Single Bounce) 21 ms 30 fps

Bunny/Dragon (Single Bounce) 38 ms 26.3 fps

table 5.1: Ray tracing rendering time for our test scenes

As illustrated in Table 5.1, all results are the average of 100 runs of the same model, the
performance we achieve for primary and secondary rays for all benchmarks achieves real-time
frame rates. We also noticed that the overhead for the secondary rays in both the Fairy Forest
and Toasters models is low compared to the primary rays we believe that this is due our scenes
contains a relatively small number of specular surfaces.

88

5.2 Results and Dicussion

(a) Fairy Forest model (b) Fairy Forest model (Reflection)

(c) Toasters model (d) Toasters model (Reflec-
tion)

(e) Toasters model (Refrac-
tion)

(f) Dragon model (g) Cloth on ball model (h) Bunny/Dragon model

Figure 5.4: Our test scenes rendered on a 1024 X 1024 window using a GTX 285 device

89

5. RAY TRACING ON GPU

90

6

Photon Mapping on GPU

6.1 Introduction to Offline Photon Mapping

Photon mapping (PM) [Jensen, 1996, 2001, 2004] is a two pass rendering algorithm that can
efficiently produce a full range of global illumination (GI) effects including caustics and diffuse
interreflections. In the first pass photon map(s) are constructed by tracing photons generated at
each light source, and in second pass we use the photon map(s) to estimate the radiance at any
point to produce various global illumination effects. In this section we will explain briefly the
main rendering steps of the photon mapping algorithm.

6.1.1 The First Pass -Building Photon Map(s)-

In this pass a relatively large number of photons are emitted from each light source, traced
throughout the scene, and stored in the photon map. Photons carry and propagate flux (packets
of light energy) and are used simulate light energy transfer inside the scene. Technically a
photon is represented by a position (3 floats), an incident direction represented as a sampled
spherical direction inside a unit sphere (2 bytes), and a power represented as a color value (3
floats).

6.1.1.1 Photon Emission

Photons are emitted from the light source in directions similar to the PDF of light source emis-
sion. For example for a point light source photons are emitted uniformly in all direction. Each

91

6. PHOTON MAPPING ON GPU

Direct Lighting

(+) Using Monte Cralo ray tracing

(+) Direct lighting

Specular Reflection

(+) Using Monte Cralo ray tracing

(+) Direct lighting

(+) Specular reflection

Caustics

(+) Radiance estimation using caustics photon map

(+) Direct lighting

(+) Specular reflection

(+) Caustics

Indirect Lighting (diffuse interreflections)

(+) Hemi-spherical sampling

(+) Radiance estimation using global photon map

(+) (Ir)radiance caching and interpolation

+

(+) Global Illumination

Figure 6.1: Main building blocks of the photon mapping algorithm

92

6.1 Introduction to Offline Photon Mapping

emitted photon carries the same power as of the light source and after photon tracing pass we
scale the power of all stored photons by the total number of emitted photons. Since a photon
may be stored several times during traversal, the total number of stored photons may differ
from the number of emitted photons.

6.1.1.2 Photon Tracing and Storing

Once a photon is emitted it is traced into the scene in a way similar to ray tracing. When a
photon hits a surface it can be reflected, refracted, or absorbed based on the surface material
and a stochastic test using Russian roulette Arvo and Kirk [1990]; Jensen [2001]. A photon
is stored in the photon map (e.g. a point based KD-tree) 1 only when it hits a diffuse surface.
One advantage of the photon mapping algorithm is that we can use several photon maps to
efficiently simulate various visual effects. For example we can use a global photon map that
stores all photons to render indirect lighting due to diffuse interreflections, and we can use a
caustic photon map which stores a photon when its immediate previous hit is a specular surface
to simulate caustics effects, and to simulate participating media and volumetric rendering we
use volume photon map together with ray marching. In our work we will ignore volumetric
rendering and will concentrate on other global illumination effects produced using global and
caustic photon maps on GPU.

6.1.2 The Second Pass - Rendering-

To render an image using photon mapping we use standard or distributed ray tracing and evalu-
ate the reflected radiance at each intersection point as the sum of four distinct components (see
figure 6.1):

1. Direct lighting which is calculated using standard Monte Carlo ray tracing.

2. Specular reflection which is calculated also using Monte Carlo ray tracing.

3. Caustics due concentrated reflected or refracted light rays and this term is calculated by
radiance estimation in the caustic photon map.

4. Indirect illumination due to diffuse interreflections which is calculated efficiently using
the global photon map in a more complex step called final gather.

1Other variations of the photon map structure include grid and hash grid see [Ma and McCool, 2002; Purcell,
Buck, Mark, and Hanrahan, 2005] for more details.

93

6. PHOTON MAPPING ON GPU

6.1.2.1 Radiance Estimate

To estimate the reflected radiance at a given surface point we use the photon map to locate the
nearest photons in a the upper hemisphere with a radius r centered at the this point. Then we
calculate the reflected radiance Lr(x, ~ω) as the integration of the irradiance flux modulated by
the surface BRDF using the equation:

Lr(x, ~ω) ≈ 1

πr2

N∑
p=1

fr(x, ~ωp, ~ω)∆φp(x, ~ωp)

Where fr is the BRDF of the surface material (e.g. the alpedo ρ for lambertian surfaces). In
this equation, the more photons in the radiance estimation, the better approximation at the cost
of more computation effort. But later we will see that about 50 ∼ 100 photons is enough to get
plausible results if we use a final gather step for indirect lighting.

6.1.2.2 Final Gather for Indirect Lighting

To evaluate incident radiance at certain point we can perform irradiance estimation directly
in the global photon map but this will lead to blotchy spots in the rendering unless we use
very large number of photons in the both the photon map and radiance estimation. Instead, a
better way to calculate incident radiance is to perform a final gather step at each shading point.
During this final gather step we sample a considerable number of rays (i.e. about 250 ∼ 1000

rays) in the upper hemisphere according to surface BRDF and trace these rays into the scene,
once we found a hit 1 we perform irradiance estimation in the global photon map at this hit
point. Finally, we calculate the incident irradiance as the average estimation returned from all
rays hits.

6.1.2.3 Irradiance Caching

Even though with final gather the rendering time may be prohibitively impractical due to total
number of final gather rays. Ward et al. [Ward, Rubinstein, and Clear, 1988] noticed that indi-
rect lighting changes smoothly over surfaces and presented his key idea about radiance caching
(RC) 2. The main idea behind radiance caching is to store old values of indirect radiance in a hi-
erarchical data structure (e.g. Octree) that allows fast range search and use interpolation when
possible to calculate further new queries of radiance values when possible. Unsurprisingly the

1In this case we still search for the nearest hit in scene.
2In fact the radiance caching term was later coined after the original publication appeared.

94

6.2 Parallel Photon Mapping on GPU

same technique can be applied directly to the irradiance calculation with photon mapping which
significantly reduces the render time making the whole photon mapping algorithm more prac-
tical [Gautron, Bouatouch, and Pattanaik, 2006; Jarosz, Donner, Zwicker, and Jensen, 2008;
Jarosz, Zwicker, and Jensen, 2008; Křivánek, Bouatouch, Pattanaik, and Žára, 2008] 1.

6.2 Parallel Photon Mapping on GPU

In this section we explain the main steps of the parallel photon mapping algorithm on GPU.
The entire pipeline is implemented on GPU using NVIDIA CUDA NVIDIA [2010]. Figure 6.2
shows the flow chart of the algorithm using the Cornell box scene. The input to the algorithm is
the scene description including objects, materials and light sources and the output is a globally
illuminated rendered scene.

Given an input scene we begin by building a hierarchical tree for the scene using any of the
methods explained in chapter 4. We use the resulting scene tree for both ray tracing as ex-
plained in chapter 5 and photon tracing (Section 6.2.1). The output of the ray tracing pass are
the rays trees , and the output of the photon tracing pass are two arrays of photons one for
global photons and the other for caustics photons, each of these arrays is seeded to a point
based KD-tree builder (Section 6.2.2). We use the rays trees structure to get all the shading
points that are directly or indirectly seen form the viewer and select the initial seed points for
irradiance samples positions (Section 6.2.3.1) and then we perform final gathering to calculate
irradiance samples which are seeded to KD-tree builder to build the irradiance tree (Section
6.2.4). Finally we accumulate shading (Section 6.2.5) using ray tracing for direct lighting,
irradiance estimation for caustics and irradiance interpolation for indirect lighting using the
irradiance tree.

6.2.1 Parallel Photon Tracing

1 / / G l oba l Data
2 Pho tons (Pos , Dir , Flux , Length)
3 N / / number o f e m i t t e d p h o t o n s
4 Rays (Org , Dir , F lux) / / t r a c e d r a y s
5 H i t s (D i s t , Tr i , U, V) / / h i t i n f o
6 S t o r e , S t o r e S c a n / / r a y f l a g used t o mark pho ton h i t d i f f u s e s u r f a c e
7 Bounce , BounceScan / / pho ton f l a g mark a pho ton a t t h e r a y t o be bounced
8 Scene / / s c e n e t r e e and p r i m i t i v e s
9

10 P r o c e d u r e P h o t o n T r a c e r ()

1We refer the readers for the SIGGRAPH course notes ”Practical Global Illumination Using Irradiance
Caching” [Křivánek, Gautron, Ward, Arikan, and Jensen, 2007] for more details about radiance caching with photon
mapping.

95

6. PHOTON MAPPING ON GPU

Input scene Build scene hierarchy (Ch. 4)

(+) KD-tree, BVH

Ray tracing (Ch. 5)

(+) (In)direct shading points
(shading tree)

Photon tracing (Sec. 6.2.1)⇒ KD-tree builder (Sec. 6.2.2)

(+) Global photon tree (+) Custic photon tree

Adaptive seeding (Sec. 6.2.3.1)

(+) Initial irradiance samples
locations

K-Mean clustering (Sec 7.x.y)

(+) Irradiance samples locations

Final gather (Sec 6.2.4)

(+) Irradiance samples

Build irradiance tree (Sec 6.2.4)

(+) Irradiance tree

Rendering (Sec. 6.2.5)
(+) Direct lighting and specular reflection
(+) Irradiance estimation for caustics
(+) Irradiance interpolation for indirect lighting

Figure 6.2: Main building blocks of GPU photon mapping algorithm

96

6.2 Parallel Photon Mapping on GPU

11 {
12 / / emi t p h o t o n s
13 EmitPhotons<N>()
14 NumTracedPhotons = N
15
16 i n = o u t = 0 / / a d d r e s s f o r i n p u t / o u t p u t r a y s i n r a y s a r r a y
17 pp = 0 / / ping−pong v a r i a b l e
18
19 / / s i m u l a t e pho ton bounc ing
20 f o r (i n t i =0 ; i<NumBounces ; i ++)
21 {
22 pp = 1−pp
23 i n = o u t
24 o u t = pp ∗ NumTracedPhotons
25
26 / / t r a c i n g p h o t o n s
27 TracePho tons<NumTracedPhotons>(&Rays [i n])
28
29 Scan(<Sto reScan , BounceScan>, <S t o r e , Bounce>, NumTracedPhotons)
30 S c a n T a i l (<NumStore , NumBounce>, <Sto reScan , BounceScan>, <S t o r e , Bounce>, NumTracedPhotons)
31
32 / / s t o r i n g p h o t o n s
33 S t o r e P h o t o n s<NumTracedPhotons>(&Rays [i n])
34 Pho tons . Length += NumStore
35
36 / / bounc ing p h o t o n s
37 BouncePhotons<NumTracedPhotons>(&Rays [i n] , &Rays [o u t])
38 NumTracedPhotons = NumBounce
39 }
40 / / S c a l e a l l p h o t o n s power
41 Pho tons . F lux /= N

Listing 6.1: Parallel Photon tracing algorithm

The parallel photon tracer is shown in Algorithm 6.1. The algorithm takes as input scene tree
and light sources and generates and traces N photons for a relatively small number of bounces
(e.g. 5 bounces). In this algorithm and for simplicity we assume that we have only one light
source and it is trivial to adapt the algorithm to consider more light sources. We also deal with
point light sources in our work and dealing with other kinds of light sources such as area lights
remains an open problem for future work.

Data Structures.
Output Data Structures. The output of the algorithm is Photons array including photon posi-
tion, incident direction, and irradiance flux.
Transient Data Structures. To simulate photon tracing we need Rays array which stores pho-
tons positions and incident directions and irradiant flux, this array will be used as an input/out-
put buffer in a ping-pong fashion and has length equals 2N, where N is the initial number of
traced photons. For the traced rays we temporary need an array Hits to store hit information
inclding hit distance (T) and primitive data (i.e. triangle id and barycenter coordinates of the
triangle) for each ray hit, this array has length equals N. We need an array of flags (Store)
which store 1 at index i if the traced photon at index i hits a diffuse surface and 0 otherwise,
and another array of flags (Bounce) which store 1 at index i if the traced photon at index i will

97

6. PHOTON MAPPING ON GPU

be reflected or transmitted and 0 if it will be absorbed. We store the type of photon reflection
(diffuse reflection, mirror like reflection, or transmission) temporary in the higher 2 bits of
the Tri field of the Hits struct. We prepare two other arrays (StoreScan , BounceScan) for the
scans of the Store and Bounce arrays. Since each photon have only one choice of reflection or
refraction each of the Store and Bounce arrays and their scans are of length equals N.

We create an operator EmitPhotons that fill in the Rays array. In this operator we store the
light source position in the ray origin and set the ray direction according to the BRDF of the
light source (for point light source it is uniformly sampled over a sphere) similar to Jensen
[2001] and store in the flux the light source power. We call this operator to create N (e.g. 100k
∼ 400K) photons in parallel.

1 O p e r a t o r Emi tPho tons ()
2 {
3 I n p u t : l i g h t s o u r c e (s) / / l i g h t s o u r c e
4 i = Thread Index
5 S e t Rays . Pos [i] , Rays . Di r [i] , Rays . F lux [i] u s i n g l i g h t s o u r c e p r o p e r t i e s
6 }

Listing 6.2: Emit photons

Then we iterate for a number of bounces (NumBounces) and traverse photons, store photons
hit diffuse surfaces in parallel, and generate new bounced photons in parallel to be used in the
next iteration.

When tracing photons (see TracePhotons operator); if a photon hit a surface we temporary store
hit information into Hits struct, and if the hit surface is diffuse we store 1 in Store array and 0

otherwise, and perform a stochastic test to specify the next event of the current photon [Arvo
and Kirk, 1990; Jensen, 2001]; if the photon will be bounced we store 1 in the Bounce array
and 0 otherwise, we also temporary store the next event in the 2 most significant bits in the Tri
field ([00] for diffuse reflection, [01] for mirror like reflection, and [10] for transmission).

1 O p e r a t o r T r a c e P h o t o n s (Rays r a y s [])
2 {
3 i n p u t : SceneTree / / s c e n e t r e e (e . g . BVH, KD−Tree)
4 i = Thread Index
5 Se a rc h between Rays [i] and SceneTree and s t o r e r e s u l t i n H i t s [i]
6 i f (H i t s [i] . T r i != −1)
7 {
8 BRDF = Get s u r f a c e BRDF of t r a i n a g l e H i t s [i] . T r i
9 S t o r e [i] = (BRDF i s d i f f u s e) ? 1 : 0

10 P = Get a v e r a a g e r e f l e c t a n c e o f t r a i n a g l e H i t I n f o . T r i I d
11 Bounce [i] = (RandD () < P) ? 1 : 0
12 i f (Bounce [i] == 1)
13 {
14 S t o r e n e x t pho ton e v e n t i n H i t s [i] . T r ibits[31,30]
15 }
16 }
17 e l s e
18 {
19 S t o r e [i] = 0
20 Bounce [i] = 0
21 }

98

6.2 Parallel Photon Mapping on GPU

22 }

Listing 6.3: Trace photons

After tracing the photons we perform an exclusive scan to each of the Store, and Bounce ar-
rays into StoreScan, and BounceScan arrays respectively. We use the Store array and its scan
to compact and append current photons into Photons array, we get stored photon data using
information stored in both the Hits and Rays strcuts (see StorePhotons operator). We also use
the Bounce array to generate and compact new bounced photons for the next iteration, first we
check the flag in the Bounce array if it is set we get the next action of the photon form the 2

most significant bits in the Tri field of the Hits struct and according to this event we create the
new photon in a compact form using the scan of the Bounce array, we get the new photon data
using information stored in both the Rays and Hits arrays (see BouncePhotons operator).

1 O p e r a t o r S t o r e P h o t o n s (i n : Rays)
2 {
3 i = Thread Index
4 i f (S t o r e [i] == 1)
5 {
6 a d d r e s s = Pho tons . Length + S t o r e S c a n [i]
7 F i l l Pho tons . (Pos , Dir , F lux) [a d d r e s s] u s i n g Rays [i] , H i t s [i]
8 }
9 }

Listing 6.4: Store photons

1 O p e r a t o r BouncePhotons (i n : Rays , o u t : RaysO)
2 {
3 i = Thread Index
4 i f (Bounce [i] == 1)
5 {
6 a d d r e s s = BounceScan [i]
7 F i l l RaysO [a d d r e s s] u s i n g Rays [i] , H i t s [i]
8 }
9 }

Listing 6.5: Bounce photons

6.2.2 Building Photons KD-Tree on GPU

The construction algorithm begins with an array of photons and ends with a point based KD-
tree that is either stored in a linear array of nodes or a compact preorder form Zhou et al. [2008].
Similar to the primitives KD-tree each internal node store both the split plane and split position
and references the indices of its left and right child nodes and each leaf node references a set of
photons in the photons array. We allow an exception for empty nodes which are treated as leaf
nodes reference nothing in the photons array. For efficient construction we follow the method
used in Wald, Günther, and Slusallek [2004]; Zhou et al. [2008] and begin by sorting photons
in each coordinate axis and use this sorted sequence to efficiently split nodes.

99

6. PHOTON MAPPING ON GPU

In this section we will explain the main processing steps of the parallel point based KD-tree
construction algorithm on GPU, the construction pipeline is divided into four stages: (1) ini-
tialization stage in which we sort the photons and create the root node and initialize its related
data; (2) processing large nodes stage in which we split large node; (3) processing small nodes
in which we split small nodes; and (4) KD-tree output stage in which we reorganize the tree
nodes storage to reflect a preorder traversal layout. Similar to the primitives KD-tree we use a
photons threshold T (e.g. 32) to distinguish large and small nodes.

Data Structures:

Input Data Structures. The input to the algorithm is an array of 3D floats resenting positions
(i.e. photon positions) which are stored in a SoA format.

Output Data Structures. The output of the algorithm is linear array of tree nodes where
each internal node stores the split plane and references to child nodes and each leaf node store
references to the set of photons contained in this node implicitly by a Start index and a Size to
reference a contiguous set of photons in the photons array, we optionally store in each node its
bounding box. Following the efficient node storage presented in Wald [2004] the node structure
is stored in 8 bytes (two 4 bytes integer words), and at any time during the algorithm we use
the two most significant bits ([31,30]) of the first word of the node to distinguish internal and
leaf nodes as follow:

• If the node is a leaf node, we store [11] as a leaf node flag.

• If the node is an internal node, we store the split axis into these two bits.

The other bits are managed according to the current stage of the algorithm as follow:

• During the large nodes stage each internal node uses the 30 least significant bits of the
first word to store the reference index of its left child node, and store the split position
in the second word, and each leaf node uses the 30 least significant bits of the first word
to store the index of the node’s first photon index the in the photon array, and uses the
second word store the number of photons in this node.

• During small nodes stage internal node remain as of large nodes stage, but for leaf node
we use the 30 least significant bits of the first word as an index to another array of small
roots nodes, where each small root store at most T photons references, the second word
is used as a bitwise mask to indicate the node ownership of at most T photons referenced
in the corresponding small root.

During large or small node stage we always store the two children of an internal node beside

100

6.2 Parallel Photon Mapping on GPU

each other in the node array so that a single reference in the parent node is enough to access
both children.

In the final tree layout we reorganize the tree nodes in linear integer array in which we store
nodes and their related photons together. Each internal node data still stored in 2 words where
bits 31, 30 for the first word are used to store the split axis, and bits [29 − 0] are used to store
the index of the right child node, and the left child node is accessed implicitly since it is stored
directly after the parent node. Each leaf node of size n is stored in 1+nwords, in the first word
we store [11] in bits [31, 30] as an leaf flag and use the remaining 30 bits to store the number
of photons inside this nodes, then we follow this word by the indices of node’s photons in the
photons array.

Transient Data Structures. We will explain transient data structures as we explain the pro-
cessing steps of construction the algorithm.

P0

P6

P1

P2 P3

P4

P5

P8

P10

P7

P9

P11

P12P13

P14

P15

P16

0

2

4

6

8

10

2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

index

P0

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

Photon

Figure 6.3: Photon positions and photons array

6.2.2.1 Initialization Stage

In this stage we create the root node and the association lists which reference all photons in a
sorted order.

101

6. PHOTON MAPPING ON GPU

Creating Root Node. We create the root node as a leaf referencing all the photons by setting
the leaf flag and storing 0, N in the start node index and size respectively (where N is the
total number of photons), then we add this node to the ActiveNodes array. We also maintain an
indirection array for all the photons that records the parent node index in the ActiveNodes array
for each photon.

Creating Association List. First we make three association lists of sizeN one for each coordi-
nate axis, we fill these lists in parallel using a sequential indices to refer to all non-sorted input
photons . The we use the sort utility to sort the photons in each coordinate axis employing a
temporary copy of the photon positions array as the values, and the indices array as the keys;
now the indices arrays reflect a sorted sequence of the photons in each axis and at any time
a leaf node can get its child photons by any of these arrays and for any node the three arrays
always refer to the same set of photons but in a different order. We concatenate these indices
arrays into a single array of size 3N .

0Node

0NS=NodeStart

17NZ=NodeSize

4 14 0 8 2 13 6 10 5 16 7 1 12 3 11 9 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

IndicesLarge

Figure 6.4: Initializing the association list

We choose to sort the indices using a temporary copy of the photons array for two reasons:
first, this will save us a large number of value swaps during the entire algorithm to keep the
photons sequence always in order; second, the photon structure always store other data like the
incident direction and irradiance flux so it is better to keep the photons array always aligned
and reflect the sorted other by the association lists.

During the algorithm it is easy for a leaf node to get its child photons using the IndicesLarge
array by accessing the photon index and then reading the photon data from the photons array.

We prepare for the IndicesLarge, other two empty copies, the first is used as an output buffer
for the next large nodes and used in a ping-pong fashion with the initial arrays and the second
is used for small nodes which is accumulatively filled during large node stage.

102

6.2 Parallel Photon Mapping on GPU

As a final step in the initialization stage we initialize the inherited bounding box of the root node
with scene AABB, and this is trivially done using the first and last values of the sorted sequence
of photons for each axis, the minimum photon values are accessed by indices 0, N, 2N and the
maximum photon values are accessed by indices N − 1, 2N − 1, 3N − 1.

6.2.2.2 Large Node Stage

In this stage we perform the following main steps: (1) compute the bounding box of all nodes
in an O(1) step; (2) split nodes ; (3) sort photons to child nodes based on the median photon;
(4) filter child nodes into large and small nodes; (5) distribute photons to child nodes and either
we return to step 1 if we still have large nodes or go to next stage if not. As in the primitives
KD-tree we use simple and inexpensive heuristics based on empty space maximizing and object
median for all large node splits.

Compute Nodes Bounding Box. To create the AABB for current large nodes we make an
operator that process each node in the ActiveNodes. In this operator we get the start index and
the size of the nodes, and calculate the lasts index as start index + size - 1, we calculate the
node AABB using the positions of the photons referenced by the start index and the last index
in photons array with shift 0 for the x-axis, shift N for the y-axis, and shift 2N for the z-axis
(where N is the number of phtotons in large nodes).

Nodes Splitting. To account for both “empty space” maximization and object median as the
splitting criteria for large nodes we keep two bounding boxes for each node; the tight bounding
box (Bt) calculated in the previous step, and the inherited bounding box (Bi) which recursively
inherits split planes from its parent nodes starting with the scene AABB at the root node.

We calculate the “empty space” as the difference between the two bounding boxes at each of
their 6 side planes. If the “empty space” at certain side is greater than a predefined threshold Ce

relative to the corresponding axis then we split this node at the tight bounding box position into
two child nodes; an empty node and an inherited node which inherits both the parent primitives
and the tight bounding box Bt.

To parallelize this step we make an operator that processes all nodes in parallel. In this operator
we count for each node the number of sides that pass the “empty space” threshold and store
this count into array NumEmptyNodes, we also make a 6 bits mask for each node into which
we set bit i if the corresponding side passes the “empty space” threshold, where i ∈ [0 − 5]

and corresponds to min and max sides for the x, y, and z axes, we store these masks into array
EmptySides. After calling this operator we perform an exclusive scan to the NumEmptyNodes

103

6. PHOTON MAPPING ON GPU

array using the scan utility (see Figure 6.5).

P0

P6

P2

P4

P5

P8

P10

P13

P14

P1

P3

P7

P9

P11

P12

P15

P16

1000 0000EmptySides

1 0N=NumEmptyNodes

0 1Scan(N)

Figure 6.5: Empty space calculation

Once we scanned the number of empty nodes we make an operator that splits all nodes in paral-
lel. In this operator, given a node N at index i in the AvtiveNodes array we get the start address
of its children using the scan of the NumEmptyNodes array as 2Scan(NumEmptyNodes)[i]+

2i and use the corresponding bit mask in the EmptySides array to create empty and inherited
nodes and then we split the lowest inherited node at the object median of the longest axis into
two child nodes and store them into positions 2i, 2i + 1 in the ChildNodes array (see Figure
6.6). In this step we fill both the ChildNodeSize array in which we store the size of each child
node by the median values, and the Large flags array in which we store 1 if the corresponding
child node size is greater than triangles threshold (T), and 0 otherwise (both arrays equal in size
to the ChildNodes array).

104

6.2 Parallel Photon Mapping on GPU

0

2 3

1

4 5 6 7ChildNodes

5 4 4 4ChildNodeSize

1 0 0 0L=Large

0 1 1 1LS=Scan(L)

Figure 6.6: Large Nodes Split

Since we process nodes in BFS order an later in the tree output stage we will need access all
the nodes level by level, we found that it is too hard to count the tree levels resulted from
the incoherent empty nodes pattern. So we choose to record the nodes level by level in each
iteration by considering the parent nodes and to record internal inherited and empty nodes we
keep trace of two other variable for each node: first, we record the lowest inherited or empty
node index; second, we record the number of inherited nodes and whether the inherited node is
the left or the right child, this information can be packed into a single integer value where we
store the number of inherited node Nh in the lowest significant 3 bits where Nh ∈ [0, 6] and
store in the next significant bits an Nh bits mask where bit i is set if the inherited node appear
as a left child and cleared if it appear as a right child. Later, we will see that this information is
enough to access all nodes in between parent and child nodes.

Photons Sorting. We create an arrays PhtotonLeft which is aligned with the photons SoA. We
make an operator SortPhoton which classifies each photon to the left or the right child node.
In this operator we get parent node split axis and object median and access the sorted photon
at this access from the IndicesLarge array; if the photon is below than the object median then
we store 1 in the corresponding value in the PhtotonLeft array, otherwise we store 0. Then we
make another operator that processes each 3N elements in the IndicesLarge array and fill an
array of flags of size 3N ; in this operator we read the photon index the IndicesLarge array and
get the photon value in the PhtotonLeft array, and store this value in the corresponding value in
the Left array.

105

6. PHOTON MAPPING ON GPU

0 1Node

0 9NS=NodeStart

9 8NZ=NodeSize

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Photon

1 1 1 3 1 1 1 1 1 0 0 0 0 0 0 0 0L=PhotonLeft

4 14 0 8 2 13 6 10 5 16 7 1 12 3 11 9 15

0 2 4 5 6 8 10 13 14 1 3 7 9 11 12 15 16

IndicesLarge

1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0

1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

L=Left

0 1 1 2 2 3 3 4 4 5 5 6 7 7 8 8 9

0 1 2 3 4 5 5 5 5 5 6 7 8 9 9 9 9

Scan(L)

Figure 6.7: Photons sorting to child nodes

Large/Small Nodes Filtering.

We call the Split utility employing Large array as the Flags array to split ChildNodes into
NextNodes and SmallNodes, and split ChildNodesSize into NextNodesSize and SmallNodesSize.
Then we perform an exclusive scan for both NextNodesSize and SmallNodesSize arrays to get
NextNodesStart and SmallNodesStart arrays respectively (see Figure 6.8).

4 5 6 7ChildNodes

5 4 4 4ChildNodesSize

1 0 0 0L=Large Scan⇒ 0 1 1 1LS

Split<ChildNodes, ChildNodesSize> using Large

4NextNodes 5 6 7SmallNodes

5NextNodesSize 4 4 4SmallNodesSize

Scan <NextNodesSize, SmallNodesSize>

0NextNodesStart 0 4 8SmallNodesStart

Figure 6.8: Large/Small Nodes Splitting

106

6.2 Parallel Photon Mapping on GPU

Photons Distribution. Consider a photon p at index i in the sorted association list, in parent
node N with a start index SatrtN , and a size SizeN which split into a left child node NL with
a start index StartL, and a right child node NR with a start index StartR. Using Left array a
photon (p) may be: (1) sorted to left child node (Left[i] = 1); (2) sorted to right child node
(Left[i] = 0). And the child node (NL, or NR) may be classified as a large or a small node and
accordingly its photons must be stored in its corresponding photons list.

To sort a photon index we start by finding its respective axisA as i%Nold (whereNold is number
of photons in the IndicesLarge array) and new parent node NL, or NR and the corresponding
photons list and the node start address, then we sort the photon at an offset defined by the local
scans of Left arrays relative to its new parent start address. We define the local node start for
the respective access StartAN as axis * N+ StartN and 2 local offset addresses for a photon p:
(1) the number of ones preceding it in Left array (OffsetL) which is calculated as Scan(Left)[i]
- Scan(Left)[StartAN]; (2) the number of zeros preceding it in Left array (OffsetR) which is
calculated as i - StartAN - Scan(Left)[i] - Scan(Left)[SrartAN].

107

6. PHOTON MAPPING ON GPU

0 1Node

4 14 0 8 2 13 6 10 5 16 7 1 12 3 11 9 15

0 2 4 5 6 8 10 13 14 1 3 7 9 11 12 15 16

IndicesLarge

1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0

1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

L=Left

0 1 1 2 2 3 3 4 4 5 5 6 7 7 8 8 9

0 1 2 3 4 5 5 5 5 5 6 7 8 9 9 9 9

Scan(L)

0 1 2 3 4 1 2 3 4

0 1 2 3 4 0 1 2 3

OffsetL

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

OffsetR

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 5 6 7 8 9 10 11New Address

4 0 2 6 6 0 2 4 5 6 14 8 13 10 7 1 3 9 16 12 11 15PhotonIndices

4LargeNode 5 6 7SmallNode

Figure 6.9: Photons relocation

We can distinguish 4 distinct cases for photon relocation, considering Nnew is number of pho-
ton in the next array which is calculated as the scan tail of the NextNodeStart and the NextN-
odeSize arrays:

1. Photons p goes to Left child node (NL) where:

(a) NL is a large node; then we store p at index Nnew * A + StartNL + OffsetL in the
NextNodesPhotons array.

(b) NL is a small node and A is 0; then we store p at index StartNL + OffsetL in the
SmallNodesPhotons array.

2. Photon p goes to right child node (NR) where:

(a) NR is a large node; then we store p at index Nnew * A + StartNR + OffsetR in the

108

6.2 Parallel Photon Mapping on GPU

NextNodesPhotons array.

(b) NR is a small node and A is 0; then we store p at index StartNR + OffsetR in the
SmallNodesPhotons array.

Similar to photons sorting we create an operator which handle the previously stated cases for
photon relocation and sort all photons in parallel. In this operator we also fill in the correspond-
ing Refelction arrays based on the new photon index and new parent node type and update the
photon parent node index with the child node index, note that a photon is sorted to a small
node we only need the indices of the x-axis since in small stage we have no need to keep the
respective sorted order in all axes.

6.2.2.3 Small Node Stage

In this stage we still process nodes in BFS order and employ VVH as cost estimation for node
splits. We begin with a preprocessing step in which we enumerate all split candidates in each
node. Then we perform the following steps: (1) evaluate the VVH at all split candidates in
each node and select the minimum value using standard reduction; (2) compare the minimum
VVH with the cost of not splitting the node and either we split the node and sort photons to
child nodes or mark the node as a leaf and return to step 1 if we still have new child nodes.

Preprocessing Small Nodes. In this step we prepare small roots which correspond to all small
nodes with a large parent node. Each small root defines the start photon address index in the
photons list and the number of the photons Np (where 0 < Np ≤ T) and lists all split candidates
defined by the 3 coordinates of each photon. The split candidate is defined by split axis, split
position, left and right photons sets where each photon set is represented using a T bits mask
Zhou et al. [2008].

To create small roots we prepare three arrays: SplitPosition, LeftSet, and RightSet, (each of
these arrays are of size equals 3N , where N is the total number of photons) into these arrays
we store a split position, a T bits mask of the left set, and a T bits mask of the right set for each
split candidate.

We make an operator that works on all photons in parallel. In this operator, given a photon p
at index i we store its 3 coodinate positions and left and right triangles sets staring at index
3i. The left and right triangles sets are created by comparing the candidate position against all
other photons in the node.

109

6. PHOTON MAPPING ON GPU

0 1 2Index

5 6 7Node

0 4 8NodeStart

4 4 4NodeSize

0 8 16SplitIndex

· · · · · · 16 17 18 19 20 21 22 23SplitIndex

· · · · · · 0 1 0 1 0 1 0 1SplitAxis

· · · · · · 1 2 4 6 5 1 9 8SplitPos

· · · · · · 0000 0010 0001 0011 0001 0000 0011 0011LeftSet

· · · · · · 0011 0011 0010 0010 0010 0011 0000 0000RightSet

Figure 6.10: Small roots creation

We modify the small nodes structure a little bit; Instead of defining the photons of a node by
the start photon index and number of photons, we define them by an index to the small root and
a T bits mask (NodeMask) representing the photons set in the node relative to small root start
index, similar to small roots, for a node with n photons this mask is initialized to (1 << n)−1.

0 1 2Index

5 6 7Node

0 1 2NodeSmallRoot

1111 1111 1111NodePhotonSet

Figure 6.11: Small nodes modified structure

Evaluating Node Cost. We make an operator that processes 3T splits candidates (si) for each
small node in parallel where (si ∈ [0, 3T)). In this operator we get the node’s photons set and
if a split si exist in the photon set (bit si/3 is set to 1 in the PhotonSet) then we get split position
(p), left photon set (LeftSet) and right photon set (RightSet) form the small root, and the split
axis (a) is defined implicitly by the split index (si%3). Then we evaluate the VVH cost as:

V V Hsi = Cts +
CL(si)VL(si)

V
+
CR(si)VR(si)

V

Where Cts is the cost of node traversal, CL(si), CR(si) are the number of photons lying to
the left and the right of the split, CL(si), and CR(si) are calculated using the bit count of

110

6.2 Parallel Photon Mapping on GPU

the LeftSet ANDED with PhotonSet and bit count of the RightSet ANDED with PhotonSet
respectively, VL(si), VR(si) are the volume of the child AABBs resulting from splitting the
parent node AABB with the split plane defined by (p,a). We customize the reduction utility to
reduce 3T values of each node and return the minimum VVH value and its corresponding split
index, then we make a nested parallel call to this utility to process all nodes in parallel.

0 1 2Index

5 6 7Node

2 6 10BestSplit

0 1 1S=Split

0 0 1SS = Scan(S)

0 1 2NodeSmallRoot

1111 1111 1111NodePhotonSet

0011 1100 0011 1100Left/Right Set

7 8 9 10ChildNodes

1 1 2 2NodeSmallRoot

0011 1100 0011 1100NodePhotonSet

Figure 6.12: Small nodes split

We prepare an array NodeSplit (the size of this array equals current number of nodes), into this
array we store 1 if corresponding node will be split and 0 otherwise. Once we calculated the
minimum SAH for each node; we compare it with the cost of not splitting the node and fill the
corresponding values in NodeSplit array. Then we perform an exclusive scan to this array to
use it in creating new child node.

Node Split and Photons Sorting. This step is relatively simple; we check the flag in the
NodeSplit array and if it is set then we use the split index calculated in the previous step to get
split position, axis, LeftSet and RightSet form the small root. The two child nodes are created
at an address defined by the scan of the NodeSplit array multiplied by 2. For the child nodes
we set the SamllRoot index as of the parent node value, and set the photons set of the left child
node as the bit wise AND between LeftSet and PhotonSet and set the photons set of the right
child node as the bit wise AND between RightSet and PhotonSet. We also mark the parent node
as an internal node and set its child references to refer to the newly created child nodes.

111

6. PHOTON MAPPING ON GPU

η = α‖xi − xk‖+
√

2− 2(~ni · ~nk) (6.1)

6.2.3 Irradiance Estimation

To calculate irradiance due to indirect lighting we perform the following steps:

• Estimate initial sampling locations for irradiance samples using normals and positions
of all shading points.

• Refine sampling locations using k-means clustering algorithm.

• Estimate irradiance samples using final gather rays.

• Build a hierarchy (e.g KD-Tree) for irradiance samples to be used later for irradiance
interpolation.

6.2.3.1 Selecting Irradiance Samples

We use the adaptive seeding algorithm presented in [Wang et al., 2009] 1 to select K initial
sampling locations for irradiance caching by building a static screen space quadtree [Gargan-
tini, 1982] for all shading points. The input to the algorithm is a list of all diffuse hits that are
directly or indirectly seen form the viewer, this list if hits include hit position and hit normal
and corresponding screen pixel. We used the DiffueNodes array to get all hits data from the
rays trees, but with a simple modification to the ray tracing algorithm to add the pixel location
to DiffuseData array (see chapter 5). Other inputs to the algorithm includes the number of
levels in the quadtree (L). The output of the algorithm is the initial K candidate positions and
normals for irradiance caching samples.

We used the fact every hit has a one to one corresponding to screen pixels to build linkless a
screen space quadtree for all hits. Note that our quadtree does not use any hashing methodology
like [Choi, Ju, Chang, Lee, and Kim, 2009], instead we create a 2L bits Morton code for each
hit point extracted from the screen location of the hit. This code will be used to implicitly define
the hit point to parent node relation in the quadtree. And to define the parent node to hit point
relation first we use the parallel sort, and sorted range extraction to define the relation form hit
points to leaf nodes, and then we use standard reduction on the quadtree nodes to define form
hits points relation to internal nodes.

1The algorithm pseudo code was presented in a supplementary document with paper

112

6.2 Parallel Photon Mapping on GPU

1 L / / number o f t r e e l e v e l s
2 H i t s (P o s i t i o n , Normal , Code , Index , P i x e l , E r r o r [L] , Length) / / h i t p o s i t i o n , normal , Morton code , index , p i x e l , e r r o r
3 Nodes (S t a r t , End , P o s i t i o n , Normal , E r r o r , S ize , Samples , Length) / / node s t a r t , end , p o s i t i o n , normal , e r r o r , number o f

sample s
4 NodePerLevel , NodePerLevelScan / / number o f q u a d t r e e nodes p e r l e v e l (pre−f i l l e d) , and i t s s can
5 K / / number o f seed samples
6 Temp / / t e m p o r a r y a r r a y used f o r scan , s i z e number o f q u a d t r e e l e a v e s
7 Seeds (P o s i t i o n , Normal) / / s e e d s p o s i t i o n , normal
8 P r o c e d u r e A d a p t i v e S e e d i n g ()
9 {

10 / / s t e p 1 : c r e a t e and s o r t moron codes f o r h i t s
11 s t a r t = NodePerLevel [L] / / g e t t h e s t a r t a d d r e s s f o r l e a v nodes
12 GenerateMortonCode<H i t s . Length>() ;
13
14
15 S o r t (H i t s . Code , H i t s . Index , H i t s . Length)
16 / / f i l l r e f e r e n c e r a n g e f o r l e a v e s
17 F indSor t edBounds (&Nodes . S t a r t [s t a r t] ,& Nodes . End [s t a r t] , H i t s . Code , H i t s . Length)
18
19
20 / / s t e p 2 : c a l c u l a t e a v e r a g e normal and p o s i t i o n f o r l e a f nodes
21 SegReduce(<&Nodes . P o s i t i o n [s t a r t] ,&Nodes . Normal [s t a r t]> , <H i t s . P o s i t i o n , H i t s . Noraml>, H i t s . Code , H i t s . Index ,

H i t s . Length)
22
23
24 / / s t e p 3 : c a l c u l a t e a v e r a g e normal and p o s i t i o n f o r i n e r n a l nodes u s i n g r e d u c t i o n
25 f o r (l e v e l =L−1; l e v e l >=1; l e v e l−−)
26 {
27 ReduceQuadNodes<NodePerLevel [l e v e l]>(NodePerLevelScan [l e v e l])
28 }
29
30 / / s t e p 4 : c a l c u l a t e t h e e r r o r p e r s h a d i n g p o i n t a t each l e v e l
31 C a l c u l a t e E r r o r<H i t s . Length>()
32
33
34
35 / / s t e p 5 : c a l c u l a t e t h e e r r o r p e r nodes a t each l e v e l
36 f o r (l e v e l =L−1; l e v e l >=0; l e v e l−−)
37 {
38 s t a r t = NodesPerLeve lScan [l e v e l] / / s t a r t o f nodes a t t h i s l e v e l
39 SegReduce (&Nodes . E r r o r [s t a r t] , H i t s . E r r o r [] [l e v e l] , H i t s . Code { b i t s [0−2 l e v e l]} , H i t s . Index , H i t s . Length)
40 }
41
42 / / s t e p 6 : d i s t r b i u t e number o f seed samples p e r nodes
43 Nodes . Smaples [0] = K
44 f o r (l e v e l =0 ; l e v e l<=L−1; l e v e l ++) / / f o r each l e v e l
45 {
46 D i s t r i b u t e S e e d s<NodePerLevel [l e v e l]>(NodePerLevelScan [l e v e l])
47 }
48
49 / / s t e p 7 : s e l e c t s eed samples
50 / / s can t h e number o f s e e d s a t l e a v e s
51 Scan (Temp , &NSed [s t a r t] , NodePerLevel [L])
52
53 S e l e c t I n i t i a l S e e d s<NodePerLevel [l e v e l]>(NodePerLevelScan [l e v e l])
54 }

Listing 6.6: Adaptive Sample Seeding

Algorithm 6.6 outlines the pseudo code for adaptive seeding algorithm which runs in 7 main
steps;

In step 1 We begin with the Hits struct and fill the Index array using a sequential order and
the Code array using using the Morton code. Then we perform parallel sorting on Index array
using values stored in Code array, now Index array references a screen space z-order of hit

113

6. PHOTON MAPPING ON GPU

points. We use the utility FindSortedBounds to extract the parent node references to hits for
all leave nodes using the sorted Code array. At this stage the hit point to parent leave node is
defined by using the 2L bits code and the leaf node to hit points relation is defined by node start
(Node.Start) and node end (Node.End) arrays which reference the hit points indirectly through
indices array (Hits.Index).

1 O p e r a t o r Genera teMortonCode ()
2 {
3 i = Thread Index
4 <H i t s . Index [i] , H i t s . Code [i]> = <i , Encode (H i t s . P i x e l [i])>
5 }

Listing 6.7: Generate Morton Code

In step 2 we use the segmented reduction to calculate total normal and position vectors for
every leaf node by summing both positions, normals of its child hit points.

In step 3 we move the quadtree level by level in bottom-up manner starting at level preceding
the leaf level. In each level we process nodes in parallel. For each internal node we begin by
calculating internal nodes start address as the start of its first child and the its end address as the
end of its fourth child, then we calculate its position and its normal as the sum of its 4 children
position and normal vectors respectively, we also normalize the position of the child node using
the node size and normalize its normal vector by dividing this vector by its magnitude.

1 O p e r a t o r ReduceQuadNodes (i n : S t a r t)
2 {
3 i = Thread Index
4 a d d r e s s = S t a r t + i
5 c h i l d A d r r e s s = 4∗ a d d r e s s
6 Nodes . S t a r t [a d d r e s s] = Nodes . S t a r t [c h i l d A d r r e s s]
7 Nodes . End [a d d r e s s] = Nodes . End [c h i l d A d r r e s s +3]
8 f o r (i = 0 ; i<3; i ++)
9 {

10 Nodes . P o s i t i o n [a d d r e s s] += Nodes . P o s i t i o n [c h i l d A d r r e s s]
11 Nodes . Normal [a d d r e s s] += Nodes . Normal [c h i l d A d r r e s s]
12 Nodes . S i z e [c h i l d A d r r e s s] = Nodes . End [c h i l d A d r r e s s] − Nodes . S t a r t [c h i l d A d r r e s s]
13 Nodes . P o s i t i o n [c h i l d A d r r e s s] /= Nodes . S i z e [c h i l d A d r r e s s]
14 Nodes . Normal [c h i l d A d r r e s s] /= Length (Nodes . Normal [c h i l d A d r r e s s])
15 c h i l d A d r r e s s ++
16 }
17 }

Listing 6.8: Reduce Quadtree Nodes

In step 4 we calculate L values for each hit point representing the geometric variation of the
hit to its paten nodes in each level. This step is very efficient since we first calculate the
start node index at every level using the pre-calculated array (NodePerLevelScan) and use the
Morton code to give the parent node offset in each level. We begin the 2L Morton code which
reference a parent node offset at the leaf level and then move the tree upward level by level by
shifting this code 2 bits to right for each up level. The function GetError calculate the geometric
variation using equation 6.1

114

6.2 Parallel Photon Mapping on GPU

1 O p e r a t o r C a l c u l a t e E r r o r ()
2 {
3 i = Thread Index
4 code = H i t s . Code [i]
5 f o r (l e v e l =L−1; l e v e l >=1; l e v e l−−)
6 {
7 nodeIndex = NodePerLevel [i] + code / / g e t node i n d e x form l v e l s t a r t and morton code
8 C a l c u a t e e r r o r (e) u s i n g Node a t nodeIndex and s h a d i n g p o i n t a t i
9 H i t s . E r r o r [i] [l e v e l −1] = e

10 code>>=2 / / s h i f t t h e Morton code 2 b i t s r i g h t t o move one l e v e l up
11 }
12 }

Listing 6.9: Calculate Error Per Shading Point

In step 5 we use the segmented reduction algorithm to calculate the total geometric variation
for all node as the sum of all geometric variation of its child hits. The trick here is that we still
use Morton code to give the Owner relationship for the segmented reduction utility. Similar
to step 4 we get the start index of the parent node at each level using the pre-calculated array
(NodePerLevelScan) and then at level l we use most significant bits 2l to get the parent node
offset at that level.

In step 6 we distribute the number of seeds adaptively to tree nodes level by level. We begin by
initialing the number of seed samples at the root node by the total number K. Then we traverse
the tree level by level starting from the root level. In each step we process nodes in parallel
and distribute parent number of seeds to child nodes in proportional to normalized geometric
variation term.

1 O p e r a t o r D i s t r i b u t e S e e d s (i n : S t a r t)
2 {
3 i = Thread Index
4 a d d r e s s = S t a r t + i / / g e t node i n d e x form l e v e l s t a r t and l e v e l o f f s e t
5 c h i l d A d d r e s s = a d d r e s s∗4 / / f i s r t c h i l d node i n d e x
6 / / d i s t r i b u t e node ’ s s e e d s t o i t s c h i l d r e n p r o p o r t i o n t o c h i l d r e n e r r o r
7 e r r o r = Nodes . E r r o r [c h i l d A d d r e s s +0] + Nodes . E r r o r [c h i l d A d d r e s s +1] + Nodes . E r r o r [c h i l d A d d r e s s +2] + Nodes . E r r o r [

c h i l d A d d r e s s +3]
8 f o r (c =0; c<3; c ++)
9 {

10 Nodes . Samples [c h i l d A d d r e s s +c] = Nodes . Samples [a d d r e s s]∗ (Nodes . E r r o r [c h i l d A d d r e s s +c] / e r r o r)
11 }
12 Make s u r e t h a t

∑3
c=0 Nodes . Samples [c h i l d A d d r e s s +c] = Nodes . Samples [a d d r e s s]

13 }

Listing 6.10: Distrbute seed in tree node in top down manner

In the final step we scan the number of seeds for all leaf nodes into array Temp, then we launch
a parallel kernel for all leave nodes. We check if the node has S samples to distribute, we
select S positions and normals randomly form leave node hits and store them in the Seed struct
starting at an address defined by the scanned array (Temp).

1 O p e r a t o r S e l e c t I n i t i a l S e e d s (i n : S t a r t)
2 {
3 i = Thread Index
4 a d d r e s s = S t a r t + i / / g e t node i n d e x form l e v e l s t a r t and l e v e l o f f s e t

115

6. PHOTON MAPPING ON GPU

5 nSamples = Nodes . Samples [a d d r e s s]
6 i f (nSamples > 0)
7 {
8 o u t A d d r e s s = Temp [i]
9 H i t s S t a r t = Nodes . S t a r t [a d d r e s s]

10 Hi t sEnd = Nodes . End [a d d r e s s]
11 Use j i t t e r i n g t o s e l e c t i n i t i a l nSamples s e e d s l o c a t i o n s and norma l s form H i t s [H i t s S t a r t , Hi t sEnd) and

s t o r e them i n t o a r r a y Seeds a t a d d r e s s o u t A d d r e s s
12 }
13 }

Listing 6.11: Select Initial Seeds

6.2.4 Final Gather on GPU

Once we selected initial locations for irradiance samples then we perform the final gather step.
For each sample location we sample 250 ∼ 500 rays on the upper hemisphere of the candidate
position and trace all rays in parallel. For all final gather rays hits we perform irradiance
estimation using the global photons KD-tree, then we average the radiance estimation for each
candidate using reduction. And finally we build a KD-tree for all irradiance samples based on
sample positions.

6.2.5 Rendering on GPU -Putting All Together-

And as a final step we render the final image as the integration of three main rendering com-
penetent including:

1. Direct lighting and specular reflection using rays tracing as explained in chapter 5.

2. Caustics rendering using irradiance estimation in the caustic photon map.

3. Indirect lighting using irradiance interpolation in the irradiance tree.

6.3 Results and Dicussion

6.3.1 Photon Mapping Performance

Figure 6.13 show the results of parallel photon mapping algorithm on GPU for three test scenes,
the first scene include both global photon map and caustics photon map rendering, the dragon
and simple box models includes only global photon map. In all scenes we begin by emitting 200

116

6.3 Results and Dicussion

(a) Cornel Box Model
(14 primitives)

(b) Dragon Model (200
k triangles)

(c) Simple Box Model
(28 triangles)

Figure 6.13: Our test scenes rendered using photon mapping at 2.5, 1.8, 2 fps on a 512 X 512
window using a GTX 285

k. photons and trace them in 5 bounces, we use iterative KNN search algorithm in irradiance
estimation as explained in Zhou et al. [2008].

117

6. PHOTON MAPPING ON GPU

118

7

Conclusion and Future Work

7.1 Conclustion

This thesis presents several methods toward the goal of interactive and real-time global illu-
mination based on ray tracing techniques. We introduced several theoretical contributions and
technical details for parallel ray tracing and photon mapping algorithms on GPU. In Chapter 2
we summarized the state of the art techniques for interactive and real-time global illumination
and presented a brief introduction about GPU architecture.

In Chapter 4 we introduced new parallel algorithms for constructing binned SAH BVH on
GPU. Our algorithm is relatively fast compared to recent KD-tree and BVH algorithms on
both CPU and GPU and the resulting tree is of comparable quality to these algorithms. We
also extended the primitive algorithms toolbox to include efficient algorithms required for con-
structing hierarchal trees. We presented a deep comparison between our new algorithm and
most recently algorithms for constructing both KD-trees and BVHs.

In Chapter 5 we employed our hierarchal tree construction algorithms in a Whitted style parallel
ray tracing applications, and presented several ways to organize, structure, and store rays tree
in a compact form suitable for GPU.

In Chapter 6 we implemented the entire photon mapping algorithm on GPU and evaluated a
complete parallel global illumination solution for GPU.

119

7. CONCLUSION AND FUTURE WORK

7.2 Future Work

Our work allows further extensions for future work. The frequently used utilities on GPU
presented in Chapter 4 may be a good start to implement a parallel template library for such
primitives on GPU, other techniques such as hashing may also be include for such library.

We believe that the ideas presented and discussed for fast BVH construction algorithms on
GPU such as Morton coding and primitive sorting can be extended to accelerate both the SAH
KD-tree and point based KD-Tree construction algorithms.

Our plans for the near future is to extend the Whitted style ray tracing algorithm presented in
Chapter 5 to include distributed ray tracing [Cook et al., 1984] effects. Very recently Garanzha
and Loop [Garanzha and Loop, 2010] introduced soft shadow effect using rays sorting and
frustum creation and traversal on GPU, such techniques may be promising for rendering other
distributed rays tracing effects.

The global illumination solution presented in Chapter 6 introduces a complete global illumi-
nation solution; but several areas for future research still unexplored. For example we need
to support area light sources and produce visual effects such as soft shadows, we believe that
efficient ways for frustum creation and traversal on GPU [Garanzha and Loop, 2010] may be
efficient for such case. In the radiance estimation step, we found that results produced by his-
togram based range search algorithm on GPU are of comparable quality to what produced by
range search algorithm on CPU, we believe that other solutions such as heterogeneous work
distribution on GPU Tzeng et al. [2010] will be efficient to implement the range search al-
gorithm on GPU. The radiance caching implementation was based on the approximations that
ignore the harmonic distance calculation and the adaptive nature of the original radiance aching
algorithm [Ward et al., 1988], We believe that an adaptive algorithm for Octree construction
may be efficient for implementing a better solution for radiance caching.

120

Appendix A

Frequently Used Utilities on GPU

These definitions represent wrappers for most frequently used parallel primitive algorithms on
GPU.

1. Reduction

void Reduce (O, I, N, Op=+)

Performs a reduction to an array I of length N into O using operator Op.
Parameters:
1st : output, the reduction result.
2ed : input, an array to be reduced.
3rd : input, array length.
4th : input, reduction operation, valid values are + for sum, < for minimum, and > for maximum, default
value is +.
Implementation:
We implement this utility by calling the cudppReduce [Harris et al., 2007] function with the appropriate
parameters.

2. Segmented Reduction

void SegReduce (O, I, N, Owner, Op=+)

Performs a segmented reduction to an array I using an operator Op and an array for (Owner) values which
indicates different array segments and returns the result into array O.
Parameters:
1st : output, the segmented reduction result.
2ed : input, an array to be reduced.
3rd : input, array length.
4th : input, the owner values for each segment and has the same array length N .
5th : input, reduction operation, similar to reduce utility.

121

A. FREQUENTLY USED UTILITIES ON GPU

Implementation:
We implement this utility using the segmented reduction algorithm presented in [Zhou et al., 2008].

3. Scan

void Scan (O, I, N, Params)

Performs a scan to an arrays I of length N into O using options stored in the Params argument.
Parameters:
1st : output, the scan result.
2ed : input, an array to be scanned.
3rd : input, array length.
4rd : input, scan parameters, specifies the operator, the identity value, the type and the direction for the
scan, and default values are {+, 0, Exclusive, Forward} which represent an exclusive forward sum scan.
Implementation:
We implement this utility by calling the cudppScan [Harris et al., 2007] function with the appropriate pa-
rameters.

4. Segmented Scan

void SegScan (O, I, Flags, N, Params)

Performs a segmented scan to an arrays Iof length N using an array for Head flags to indicate different array
segments and returns result into O.
Parameters:
1st : output, the segmented scan result.
2ed : input, an array to be scanned.
3rd : input, the head flags for each segment which has the same length N , each element of this array contains
0 except at the start locations of each segments in the input arrays it contains 1.
4th : input, array length.
5th : input, specifies the scan parameters similar to the scan utility.
Implementation:
We implement this utility by calling the cudppSegScan [Harris et al., 2007] function with the appropriate
parameters.

5. Scan Tail (Last Value of a Scan)

3 7 5 4 9 2 3 5Input elements

0 3 10 15 23 32 37 40Exclusive scan (+) +

3 10 15 23 32 37 40 45Inclusive scan (+) 45 Scan Tail

Figure A.1: Scan tail extraction for both inclusive and exclusive scan

Version 1: Exclusive Scan

122

void ScanTail (O, I, IScan, N, Params)

Get the last value(s) of the scan operation. This version corresponding to an exclusive scan so it requires
the original array I and scanned array IScan to get the scan result. The value returned in O equals I[N-1]
Op IScan[N-1] for forwrad scan 1.
Parameters:
1st : output, Last value of the scan.
2ed : input, an array of elements of length N .
3rd : input, an array length N , representing the exclusive scan of I array.
4th : input, array length.
5th : input, specifies the scan parameters similar to the scan utility.
Implementation:
We launch a single thread of kernel that apply the operator to the last elements of the arrays I and IScan and
copy the result to destination variables O.

Version 2: Inclusive Scan
void ScanTail (O, I, N, Params)

In this version we do not need both the original non-scanned array and the scan operator since the scan result
already exist at the last element of the scanned array IScan. The value O equals IScan[N-1] for forward scan.
Parameters:
1st : output, Last value of the scan.
2ed : input, an array length N , stores an inclusive scan result.
3rd : input, array length.
4th : input, specifies the scan parameters similar to the scan utility.
Implementation:
We launch a single thread of kernel that copy the last value in array IScan to destination variables O.

6. Segmented Scan Tails (Last Value of each Segment in a Scan)

Version 1: Exclusive Segmented Scan
void SegScanTails(O, I, IScan, SegmentsTail, NumSegments, Params)

Similar to ScanTail but get the tails of each segment in the scanned input.
Parameters:
1st : output, an array of length NumSegments which is filled by the last value of the scan of each segment.
2ed : input, a non-scanned array of input elements.
3rd : input, an exclusive scan of the array I.
4th : input, an array of length NumSegments which contains the last index of each segment of the input
arrays.
5th : input, the number of segments.
6th : input, specifies the scan parameters similar to the scan utility.
Implementation:
We launch NumSegments kernels to apply the operator to the last elements of input arrays (I and IScan) at

1For backward scan the value returned is corresponding to the first array elements, as a result the array length
(N) has no use in this case.

123

A. FREQUENTLY USED UTILITIES ON GPU

0 1 2 3 4 5 6 7Index (i)

3 7 5 4 9 2 3 5Input elements

1 0 0 0 0 1 0 0Head Flags

0 3 10 15 23 0 2 5Exclusive segmented scan (+)

+ +

3 10 15 23 32 2 5 10Inclusive segmented scan (+)

4 7Segment last index (SegLastIndex)

32 10 Segmented scan tails

Figure A.2: Scan tails extraction for a segmented scan

each segment tail and copy the result to destination array (O) at corresponding segment index. The tail value
of segment j will be calculated as O[j] = I[SegLastIndex[j]] ⊕ IScan[SegLastIndex[j]] for forward scan.

Version 2: Inclusive Segmented Scan
void SegScanTails (O, I, SegmentsTail, NumSegments, Params)

Like the non segmented scan we do not need both the original input arrays and the scan operator.

Parameters:

1st : output, an array of length NumSegments which is filled by the last value of the scan of each sgement.

2ed : input, an arrays represent an inclusive scan result.

3rd : input, an array of length N which contains the last index of each segment of the input arrays.

4th : input, the number of segments.

6th : input, specifies the scan parameters similar to the scan utility.

Implementation:

We launch NumSegments kernels to copy to the last elements of each segment in the scanned array IScan to

destination array (O) at corresponding segment index. The last of value of segment j of will be calculated

as O[j] = IScan[SegLastIndex[j]].

7. Append

void Append (O, I, N)

Append in input array I to the array O where each array is of length N.
Parameters:

124

1st : output, destination array.
2ed : input, source array.
3rd : input, array length.
Implementation:
We launch N kernels where each kernel i copy the element at index i in the each input array I to the
corresponding output array O at index i.

8. Compact

void Compact (O, I, Flags, FlagsScan)

Compact and append valid locations in input array I which are marked by 1 values in the Flags array.
Parameters:
1st : output, destination array.
2ed : input, source array.
3rd : input, flags array to mark valid location in the input array to be appended.
4th : input, exclusive sum scan of the flags array.
5th : input, array length.

Implementation:
We launch N kernels where each kernel i check the corresponding flag if it equals 1 then we copy the
element in input array (I) at index i to output array (O) at an address equals FlagsScan[i] (see figure 3.4).

9. Split

Version 1: Split into a Single List
void Split (O, I, Flags, FlagsScan, N)

For an input array I we check the flags array and separate all elements marked as 1 to the left of all elements
marked as 0.
Parameters:
1st : output, destination array.
2ed : input, source array.
3rd : input, a flags array to mark true/false elements for the desired left or right side in the output.
4th : input, exclusive sum scan of the flags array.
5th : input, array length.

Version 2: Split into Two Lists
void Split (OTrue, OFalse, I, Flags, FlagsScan)

For an input array I we divide the elements into two array OTrue and OFalse according to the input flags in
the array Flags.

1st : output, destination array for elements marked as 1 in the in the flags array.
2ed : output, destination array for elements marked as 1 in the in flags array.
3rd : input, source array.
4th : input, a flags array to mark true/false elements for the desired left or right side in the output.

125

A. FREQUENTLY USED UTILITIES ON GPU

5th : input, exclusive sum scan of the flags array.
6th : input, array length.

10. Sort

3 7 5 4 9 2 3 5Input values

0 1 2 3 4 5 6 7Input keys

2 3 3 4 5 5 7 9Output values (sorted)

5 0 6 3 2 7 1 4Output keys (indirectly sorted)

Figure A.3: Key value sorting example

void Sort (Values, Keys, N)

Sort an array of values and optionally relocate the corrsponding keys uisng the sorted sequence.
Parameters:
1st : input/output, array of values to be sorted.
2ed : input/output, array of keys to be orderd using the sorted sequence of values.
Implementation:
We call the radix sort routine (cudppSort) of the CUDPP [Harris et al., 2007] libarary.

11. Find Sorted Values Bounds

0 0 0 1 1 2 3 3Input sorted values

0 3 5 6Start of values

2 4 5 7End of values

Figure A.4: Extracting sorted values bounds

void FindSortedBounds (Start, End, I, N)

For a sorted array of N integers in the range from 0 to j it returns two arrays of j + 1 items where items in
the first array indicate the start of each value and items in the second array indicate the end of each value in
sorted array.
Parameters:
1st : output, an array that stores the start index of each value inclusivly.
1ed : output, an array that stores the end index of each value exclusively.
3rd : input, sorted array.

126

4th : input, array length.
Implementation:
We use an efficient implementation of this utility which exits in NIVIDA CUDA samples 1, and this kernel
works by launching N threads where each thread check neighboring values (V1, V2) and if it find they
differ then it set the end bound of V1 and the start bound of V2. But we have to initialize the bound arrays
to 0 values if it is expected that some values in the sorted range may not appear. We present this kernel in
appendix.

12. Random Number Generator

uint[float] RandD ()

Returns an unsigned integer or a float random number.
Implementation:
We pre-generate a large number of random numbers on GPU using (cudppRand) function which implement
Mersenne Twister Matsumoto and Nishimura [1998] pseudorandom generator and later we access these
numbers using thread index. Other option is to implement a simple quasi random number generator like
Haltom sequence 2.

1This implementation exist in the particle sample of NVIDIA CUDA sample [NVIDIA, 2010]
2The NVIDIA CUDA samples [NVIDIA, 2010] also contains a sample implementing Mersenne Twister pseu-

dorandom generator

127

A. FREQUENTLY USED UTILITIES ON GPU

128

Appendix B

Parallel Chunking Primitive and
Utility

The input to the chunking primitive is the chunk size T and nodes SoA contains an array for
nodes start index and an array for nodes size, and the output to such primitives is the chunks
SoA that partition the nodes into chunks of primitives of at most T size. consisting of three
arrays; the first is the ChunksOwner array which contains node indices to the nodes array; the
second is the ChunksStart array which stores the start index of each chunk; and third is the
ChunksSize array which stores the size of each chunk. We will explain two ways for preparing
chunks data structures; the first method uses two segmented scan passes over a number of
elements equals the total number of chunks to prepare the data structure, and the second uses a
single standard scan pass and a parallel processing pass over a number of elements equals the
total number of chunks to perform the same operator.

Method 1: Craeting Chunks Using Segemnted Scan. To divide triangles of each node into
Fixed-Sized chunks of at most T triangles we use the Decompression scheme presented in
Garanzha and Loop [2010]. First, we create an array ChunksPerNode equal in size to the Ac-
tiveNodes array, where ChunksPerNodei = dNodeSizei/T e and then scan this array and get to-
tal number of chunks (TotChunks) using the ScanTail utility. We create three arrays HeadFlags
and OwnerSkeleton and StartSkeleton (each array of size equals to TotChunks). To fill these
arrays we consider Scan(ChunksPerNode) as HeadIndices array and the number of nodes as the
number of segments (NumSegments). We fill the HeadFlags array by calling the FillHeadFlags
utility, and fill the OwnerSkeleton array with node indices at head locations and zeros otherwise
by calling the the FillSkeleton utility, and fill the StartSkeleton array with NodeStart at head
locations and T values otherwise by calling the FillSkeleton utility employing NodeStart as the

129

B. PARALLEL CHUNKING PRIMITIVE AND UTILITY

HeadValues array , and T as the ConstantValue. Then we apply an inclusive segmented scan
to OwnerSkeleton and StartSkeleton arrays using the HeadFlags array. After these scans we
consider the scan(OwnerSkeleton) as the ChunksOwner array and the scan(StartSkeleton) as
the ChunksStart array and fill the ChunksSize array with the differences between neighboring
ChunksStart elements (see Figure B.1).

0 1 2NodeIndex

0 6 11NodeStart

6 5 3ActiveNodesSize

2 2 1ChunksPerNode Scan⇒ 0 2 4

5ScanTail⇒ NumChunks

0 1 2 3 4Chunks

1 0 1 0 1HeadFlags

0 0 1 0 2OwnerSkeleton SegScan⇒

0 4 6 4 11StartSkeleton SegScan⇒

0 0 1 1 2ChunksOwner

0 4 6 10 11ChunksStart

4 2 4 1 3ChunksSize

Figure B.1: Chunks creation using segmented scan, for illustration purpose we set the chunk size
T equals 4.

Method 2: Craeting Chunks Using Standard Scan.

So far, we have created chunks data structure using two segmented scans over the OwnerSkele-
ton and StartSkeleton arrays. However, it was noticed that segmented scans are about three
times slower than the unsegmented scans Sengupta et al. [2007]; so, we can enhance this pro-
cess by replacing the two segmented scans with a single unsegmented scan. Like the original
process we start by filling the ChunksPerNode array, scan it and get the total number of chunks
(NumChunks), then we fill the HeadFlags array in way similar to one used in the FillHead-
Flags utility except that we set the first element to 0, then, we perform an inclusive scan this
array and consider the scan result as the ChunksOwner array. We launch NumChunks threads
of an operator that fills the ChunkStart array. In this operator using the thread index (i) we
get the owner node (O) form the corresponds value in the ChunksOwner array, and get the
segment start of the current chunk (H) as Scan(ChunksPerNode)[O], and then we calculate the
corresponding value in the start array as: NodeStart[O] + (H-i)× T. After calling this operator
we fill the array Size using the difference between every two neighboring elements as in the
original segmented chunk creation process(see Figure B.2).

130

0 1 2NodeIndex

0 6 11NodeStart

6 5 3NodeSize

2 2 1ChunksPerNode Scan⇒ 0 2 4

5ScanTail⇒ NumChunks

0 1 2 3 4Chunk

0 0 1 0 1HF=HeadFlags

0 0 1 1 2ChunksOwner = Scan(HF)

0 4 6 10 11ChunkStart

4 2 4 1 3ChunksSize

Figure B.2: Chunks creation using standard scan, chunk size T equals 4.

Parallel Chunking Utility.

We can define chunking primitive as follow:

void CreateChunks(T, NodesStart, NodesSize, N, ChunksOwner, ChunksStart,

ChunksStart, NumChunks)

Create chunks of primitives of approximately size T for the N nodes.
Parameters:
1st : input, the maximum size of a chunk.
2ed : input, an array of length N that store the start index of each input node.
3rd : input, an array of length N that store the size of each input node.
4th : input, the number of input nodes.
5th : output, an array of length NumChunks that store the parent node index of each chunk.
6th : output, an array of length NumChunks that store the start index of each chunk.
7th : output, an array of length NumChunks that store the size of each chunk.
8th : output, the total number of output chunks.
Implementation:
We implemented this utility using method 1 which employs the segmented scan.

131

B. PARALLEL CHUNKING PRIMITIVE AND UTILITY

132

Bibliography

AILA, T. AND LAINE, S. 2009. Understanding the efficiency of ray traversal on gpus. In HPG
’09: Proceedings of the Conference on High Performance Graphics 2009. ACM, New York,
NY, USA, 145–149. 2, 12, 69, 70

AKENINE-MÖLLER, T., HAINES, E., AND HOFFMAN, N. 2008. Real-Time Rendering 3rd
Edition. A. K. Peters, Ltd., Natick, MA, USA. 7

ARVO, J. AND KIRK, D. 1990. Particle transport and image synthesis. In SIGGRAPH ’90:
Proceedings of the 17th annual conference on Computer graphics and interactive tech-
niques. ACM, New York, NY, USA, 63–66. 93, 98

BIALLY, T. 1969. Space-filling curves: Their generation and their application to bandwidth
reduction. In IEEE Transactions on Information Theory. Vol. 15. 658–664. 69

BOULOS, S., EDWARDS, D., LACEWELL, J. D., KNISS, J., KAUTZ, J., SHIRLEY, P., AND

WALD, I. 2007. Packet-based whitted and distribution ray tracing. In GI ’07: Proceedings
of Graphics Interface 2007. ACM, New York, NY, USA, 177–184. v, 8

CHOI, M. G., JU, E., CHANG, J.-W., LEE, J., AND KIM, Y. J. 2009. Linkless octree using
multi-level perfect hashing. Computer Graphics Forum 28, 7, 1773–1780. 112

COOK, R. L., CARPENTER, L., AND CATMULL, E. 1987. The reyes image rendering archi-
tecture. SIGGRAPH Comput. Graph. 21, 95–102. 13

COOK, R. L., PORTER, T., AND CARPENTER, L. 1984. Distributed ray tracing. SIGGRAPH
Comput. Graph. 18, 3, 137–145. 7, 12, 120

DANILEWSKI, P., POPOV, S., AND SLUSALLEK, P. Binned sah kd-tree construction on a gpu.
Technical report. 27

ENGEL, W. 2009. ShaderX7: Advanced Rendering Techniques. Charles River Media. 11

133

BIBLIOGRAPHY

FOLEY, T. AND SUGERMAN, J. 2005. Kd-tree acceleration structures for a gpu raytracer. In
HWWS ’05: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graph-
ics hardware. ACM, New York, NY, USA, 15–22. 70

GARANZHA, K. 2009. The use of precomputed triangle clusters for accelerated ray tracing in
dynamic scenes. Computer Graphics Forum 28, 4, 1199–1206. 2

GARANZHA, K. AND LOOP, C. 2010. Fast ray sorting and breadth-first packet traversal for
gpu ray tracing. Computer Graphics Forum 29, 2, 289–298. 12, 19, 28, 120, 129

GARGANTINI, I. 1982. An effective way to represent quadtrees. Commun. ACM 25, 12,
905–910. 112

GAUTRON, P., BOUATOUCH, K., AND PATTANAIK, S. 2006. Temporal radiance caching. In
ACM SIGGRAPH 2006 Sketches. SIGGRAPH ’06. ACM, New York, NY, USA. 95

GLASSNER, A. S. 1989. An Introduction to Ray tracing. Morgan Kaufmann. 7

GOLDSMITH, J. AND SALMON, J. 1987. Automatic creation of object hierarchies for ray
tracing. IEEE Comput. Graph. Appl. 7, 14–20. 25

GORAL, C. M., TORRANCE, K. E., GREENBERG, D. P., AND BATTAILE, B. 1984. Modeling
the interaction of light between diffuse surfaces. SIGGRAPH Comput. Graph. 18, 213–222.
1, 9, 12

GREEN, R. Spherical harmonic lighting: The gritty details. 13

GUNTHER, J., POPOV, S., SEIDEL, H.-P., AND SLUSALLEK, P. 2007. Realtime ray tracing
on gpu with bvh-based packet traversal. Symposium on Interactive Ray Tracing 0, 113–118.
69

HACHISUKA, T., JAROSZ, W., WEISTROFFER, R. P., DALE, K., HUMPHREYS, G.,
ZWICKER, M., AND JENSEN, H. W. 2008. Multidimensional adaptive sampling and re-
construction for ray tracing. ACM Trans. Graph. 27, 33:1–33:10. 12

HARRIS, M., OWENS, J. D., SENGUPTA, S., ZHANG, Y., DAVIDSON, A., AND TSENG, S.
2007. Cudpp library. 15, 121, 122, 126

HARRIS, M., SENGUPTA, S., AND OWENS, J. D. 2007. Parallel prefix sum (scan) with cuda.
In GPU Gems 3, H. Nguyen, Ed. Addison Wesley. 19, 21, 28

134

BIBLIOGRAPHY

HAVRAN, V. 2000. Heuristic ray shooting algorithms. Ph.D. thesis, Department of Computer
Science and Engineering, Faculty of Electrical Engineering, Czech Technical University in
Prague. 6, 12, 25, 26, 33

HEARN, D. AND BAKER, M. P. 1994. Computer Graphics. Prentice Hall. 11

HORN, D. R., SUGERMAN, J., HOUSTON, M., AND HANRAHAN, P. 2007. Interactive k-d
tree gpu raytracing. ACM, New York, NY, USA, 167–174. 70

HOU, Q., QIN, H., LI, W., GUO, B., AND ZHOU, K. 2010. Micropolygon ray tracing with
defocus and motion blur. In ACM SIGGRAPH 2010 papers. SIGGRAPH ’10. ACM, New
York, NY, USA, 64:1–64:10. 13

HOU, Q., SUN, X., ZHOU, K., LAUTERBACH, C., AND MANOCHA, D. 2010. Memory-
scalable gpu spatial hierarchy construction. IEEE Transactions on Visualization and Com-
puter Graphics 99, PrePrints. 27, 67

HUNT, W., MARK, W., AND STOLL, G. 2006. Fast kd-tree construction with an adaptive
error-bounded heuristic. Symposium on Interactive Ray Tracing 0, 81–88. 26

IZE, T., SHIRLEY, P., AND PARKER, S. G. 2007. Grid creation strategies for efficient ray
tracing. IEEE/EG Symposium on Interactive Ray Tracing 17, 2732. 7

JAROSZ, W., DONNER, C., ZWICKER, M., AND JENSEN, H. W. 2008. Radiance caching for
participating media. ACM Trans. Graph. 27, 1, 1–11. 95

JAROSZ, W., ZWICKER, M., AND JENSEN, H. W. 2008. Irradiance Gradients in the Presence
of Participating Media and Occlusions. Computer Graphics Forum (Proceedings of EGSR
2008) 27, 4. 95

JENSEN, H. W. 1996. Global illumination using photon maps. Rendering Techniques, 21–30.
91

JENSEN, H. W. 2001. Realistic Image Synthesis Using Photon Mapping. AK Peters. v, 1, 9,
10, 12, 91, 93, 98

JENSEN, H. W. 2004. A practical guide to global illumination using ray tracing and photon
mapping. In ACM SIGGRAPH 2004 Course Notes. SIGGRAPH ’04. ACM, New York, NY,
USA. 11, 75, 91

JENSEN, H. W., ARVO, J., DUTRE, P., KELLER, A., PHARR, M., , AND SHIRLEY, P. 2003.
Monte carlo ray tracing. In ACM SIGGRAPH 2003 courses. SIGGRAPH ’03. ACM, New
York, NY, USA. 11, 12, 75

135

BIBLIOGRAPHY

KAJIYA, J. T. 1986. The rendering equation. SIGGRAPH Comput. Graph. 20, 143–150. 1, 9

KALOJANOV, J. AND SLUSALLEK, P. 2009. A parallel algorithm for construction of uniform
grids. In Proceedings of the Conference on High Performance Graphics 2009. HPG ’09.
ACM, New York, NY, USA, 23–28. 2

KLIMASZEWSKI, K. S. AND SEDERBERG, T. W. 1997. Faster ray tracing using adaptive
grids. IEEE Computer Graphics and Applications 17, 42–51. 6

KŘIVÁNEK, J., BOUATOUCH, K., PATTANAIK, S., AND ŽÁRA, J. 2008. Making radiance and
irradiance caching practical: adaptive caching and neighbor clamping. In ACM SIGGRAPH
2008 classes. SIGGRAPH ’08. ACM, New York, NY, USA, 77:1–77:12. 95

KŘIVÁNEK, J., GAUTRON, P., WARD, G., ARIKAN, O., AND JENSEN, H. W. 2007. Practical
global illumination with irradiance caching. In ACM SIGGRAPH 2007 courses. SIGGRAPH
’07. ACM, New York, NY, USA. 95

LAUTERBACH, C., GARLAND, M., SENGUPTA, S., LUEBKE, D., AND MANOCHA, D. 2009.
Fast bvh construction on gpus. Computer Graphics Forum 28, 2, 375–384. 2, 3, 12, 26, 27,
32, 43, 60, 63, 71

MA, V. C. H. AND MCCOOL, M. D. 2002. Low latency photon mapping using block hash-
ing. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware. HWWS ’02. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland,
89–99. 93

MATSUMOTO, M. AND NISHIMURA, T. 1998. Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput.
Simul. 8, 3–30. 127

MOORE, G. E. 2000. Readings in computer architecture. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, Chapter Cramming more components onto integrated circuits,
56–59. 15

MORLEY, R. K. AND SHIRLEY, P. 2003. Realistic Ray Tracing. AK Peters. 7, 75

NG, R., RAMAMOORTHI, R., AND HANRAHAN, P. 2003. All-frequency shadows using non-
linear wavelet lighting approximation. ACM Trans. Graph. 22, 376–381. 13

NVIDIA 2010. CUDA programming guide 3.1, http://developer.nvidia.com/object/cuda.html.
NVIDIA. Last accessed Oct., 2010. 16, 95, 127

136

BIBLIOGRAPHY

PANTALEONI, J. AND LUEBKE, D. 2010. Hlbvh: Hierarchical lbvh construction for real-time
ray tracing of dynamic geometry. In In Proceedings of High Performance Graphics’10.
87–95. 27, 68, 70

PARKER, S. G., BIGLER, J., DIETRICH, A., FRIEDRICH, H., HOBEROCK, J., LUEBKE, D.,
MCALLISTER, D., MCGUIRE, M., MORLEY, K., ROBISON, A., AND STICH, M. 2010.
Optix: a general purpose ray tracing engine. ACM Trans. Graph. 29, 66:1–66:13. v, 8

PATNEY, A. AND OWENS, J. D. 2008. Real-time reyes-style adaptive surface subdivision.
ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH Asia) 27, 5 (Dec.), 143:1–
143:8. 13

PHARR, M. AND HUMPHREYS, G. 2010. Physically Based Rendering: From Theory to Im-
plementation. Morgan Kaufmann. 7, 26, 75

PHARR, M., LEFOHN, A., KOLB, C., LALONDE, P., FOLEY, T., AND BERRY, G. Pro-
grammable graphics - the future of interactive rendering. Neoptica Technical Report. 11

POPOV, S., GÜNTHER, J., SEIDEL, H.-P., AND SLUSALLEK, P. 2006. Experiences with
streaming construction of SAH KD-trees. In Proceedings of the 2006 IEEE Symposium on
Interactive Ray Tracing. 89–94. 26

PURCELL, T. J., BUCK, I., MARK, W. R., AND HANRAHAN, P. 2005. Ray tracing on pro-
grammable graphics hardware. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Courses. ACM,
New York, NY, USA, 268. 93

QUINN, M. J. 1993. Parallel Computing: Theory and Practice. CMcGraw-Hill. 19

RAMAMOORTHI, R. 2009. Precomputation-based rendering. Found. Trends. Comput. Graph.
Vis. 3, 281–369. 13

RAMAMOORTHI, R. AND HANRAHAN, P. 2001. An efficient representation for irradiance
environment maps. In Proceedings of the 28th annual conference on Computer graphics
and interactive techniques. SIGGRAPH ’01. ACM, New York, NY, USA, 497–500. 13

RAMAMOORTHI, R. AND HANRAHAN, P. 2002. Frequency space environment map rendering.
ACM Trans. Graph. 21, 517–526. 13

REINHARD, E., SMITS, B. E., AND HANSEN, C. 2000. Dynamic acceleration structures
for interactive ray tracing. In Proceedings of the Eurographics Workshop on Rendering
Techniques 2000. Springer-Verlag, London, UK, 299–306. 7

137

BIBLIOGRAPHY

SATISH, N., HARRIS, M., AND GARLAND, M. 2009a. Designing efficient sorting algorithms
for manycore gpus. In Proceedings of the 2009 IEEE International Symposium on Paral-
lel&Distributed Processing. IEEE Computer Society, Washington, DC, USA, 1–10. 19, 21,
28

SATISH, N., HARRIS, M., AND GARLAND, M. 2009b. Designing efficient sorting algorithms
for manycore gpus. In 23rd IEEE Intl Parallel & Distributed Processing Symposium. 59

SENGUPTA, S., HARRIS, M., ZHANG, Y., AND OWENS, J. D. 2007. Scan primitives for gpu
computing. In Graphics Hardware 2007. ACM, 97–106. 19, 21, 22, 28, 57, 130

SHUBHABRATA SENGUPTA, M. H. AND GARLAND, M. 2008. Efficient parallel scan algo-
rithms for gpus. NVIDIA Technical Report NVR-2008-003. 19, 28

SLOAN, P.-P., KAUTZ, J., AND SNYDER, J. 2002. Precomputed radiance transfer for real-
time rendering in dynamic, low-frequency lighting environments. ACM Trans. Graph. 21,
527–536. 13

SUBR, K. 2008. Sampling strategies for efficient monte carlo image synthesis. Ph.D. thesis,
University of California, Irvine. 11

SUN, X., HOU, Q., REN, Z., ZHOU, K., AND GUO, B. 2011. Radiance transfer bicluster-
ing for real-time all-frequency biscale rendering. IEEE Transactions on Visualization and
Computer Graphics 17, 64–73. 13

TZENG, S., PATNEY, A., AND OWENS, J. D. 2010. Task management for irregular-parallel
workloads on the gpu. In High Performance Graphics, M. Doggett, S. Laine, and W. Hunt,
Eds. Eurographics Association, 29–37. 2, 120

VEACH, E. 1997. Robust monte carlo methods for light transport simulation. Ph.D. thesis,
Stanford University. 1, 9, 11, 12

WALD, I. 2004. Realtime Ray Tracing and Interactive Global Illumination. Ph.D. thesis,
Computer Graphics Group, Saarland University. 2, 12, 25, 26, 31, 70, 100

WALD, I. 2007. On fast construction of sah-based bounding volume hierarchies. In In Pro-
ceedings of the 2007 IEEE/EG Symposium on Interactive Ray Tracing. IEEE. 33–40. 7, 12,
26, 27, 33, 50

WALD, I., BOULOS, S., AND SHIRLEY, P. 2007. Ray tracing deformable scenes using dynamic
bounding volume hierarchies. ACM Trans. Graph. 26, 1, 6. 26

138

BIBLIOGRAPHY

WALD, I., GNTHERY, J., AND SLUSALLEKY, P. 2004. Balancing considered harmful faster
photon mapping using the voxel volume heuristic . Computer Graphics Forum 23, 3, 595–
603. 12, 26

WALD, I., GÜNTHER, J., AND SLUSALLEK, P. 2004. Balancing considered harmful – faster
photon mapping using the voxel volume heuristic. Computer Graphics Forum 22, 3, 595–
603. (Proceedings of Eurographics). 99

WALD, I. AND HAVRAN, V. 2006. On building fast kd-trees for ray tracing, and on doing that
in O(N log N). In Proceedings of the 2006 IEEE Symposium on Interactive Ray Tracing.
61–69. 7, 12, 26, 71

WALD, I., IZE, T., KENSLER, A., KNOLL, A., AND PARKER, S. G. 2006. Ray tracing
animated scenes using coherent grid traversal. ACM Trans. Graph. 25, 485–493. 6, 12, 25

WALD, I., SLUSALLEK, P., BENTHIN, C., AND WAGNER, M. 2001. Interactive rendering
with coherent ray tracing. In Computer Graphics Forum. 153–164. 12, 69

WANG, R., WANG, R., ZHOU, K., PAN, M., AND BAO, H. 2009. An efficient gpu-based
approach for interactive global illumination. In SIGGRAPH ’09: ACM SIGGRAPH 2009
papers. ACM, New York, NY, USA, 1–8. 2, 4, 112

WARD, G. J., RUBINSTEIN, F. M., AND CLEAR, R. D. 1988. A ray tracing solution for
diffuse interreflection. In SIGGRAPH ’88: Proceedings of the 15th annual conference on
Computer graphics and interactive techniques. ACM, New York, NY, USA, 85–92. 94, 120

WHITTED, T. 1980. An improved illumination model for shaded display. Commun. ACM 23, 6,
343–349. v, 1, 2, 5, 6, 8, 12

WOOP, S. A ray tracing hardware architecture for dynamic scenes. Technical report, Saarland
University. 70

ZHOU, K., HOU, Q., REN, Z., GONG, M., SUN, X., AND GUO, B. 2009. Renderants:
interactive reyes rendering on gpus. In ACM SIGGRAPH Asia 2009 papers. SIGGRAPH
Asia ’09. ACM, New York, NY, USA, 155:1–155:11. 13

ZHOU, K., HOU, Q., WANG, R., AND GUO, B. 2008. Real-time kd-tree construction on
graphics hardware. ACM Trans. Graph. 27, 5, 1–11. v, 2, 3, 4, 10, 12, 19, 20, 26, 27, 28, 32,
40, 71, 76, 99, 109, 117, 122

139

	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Thesis Organization

	2 Introduction to Ray Tracing and Global Illumination
	2.1 Ray Tracing
	2.1.1 Classic Ray Tracing -Whitted Style Ray Tracing-
	2.1.2 Distributed Ray Tracing -a Ray Tracing Extension-

	2.2 Global Illumination
	2.2.1 The Rendering Equation

	2.3 Previous Work in Rendering Techniques
	2.3.1 Rasterization
	2.3.2 Physically Based Rendering
	2.3.3 Reyes Rendering Architecture
	2.3.4 Precomputed Radiance Transfer

	3 Introduction to GPU Parallel Computing
	3.1 GPU and Parallel Computing
	3.2 The CUDA Programming Model
	3.2.1 Host and Device
	3.2.2 Thread Hierarchy
	3.2.3 Memory Hierarchy
	3.2.4 SIMD/SIMT Execution

	3.3 Data Parallel Primitive Algorithms on GPU
	3.3.1 Parallel Reduction and Segmented Reduction
	3.3.2 Parallel Scan and Segmented Scan
	3.3.3 List Compaction
	3.3.4 List Split and Segmented List Split

	4 Parallel Hierarchical Tree Construction Algorithms on GPU
	4.1 Motivation and Previous Work
	4.1.1 Spatial Partitioning Data Structures
	4.1.2 Parallel Tree Construction on GPU
	4.1.3 Data Parallel Primitive Algorithms on GPU

	4.2 Data Parallel Operator and Data Parallel Utilities
	4.2.1 Data Parallel Operator
	4.2.2 Frequently Used Data Parallel Utilities
	4.2.3 Extensions to Data Parallel Operators and Utilities

	4.3 BFS Tree Construction Algorithms on GPU
	4.4 Parallel SAH KD-tree Construction Algorithm
	4.4.1 Large Node Stage
	4.4.2 Small Node Stage

	4.5 Parallel SAH BVH Construction
	4.5.1 Large Node Stage
	4.5.2 Small Node Stage

	4.6 Proposed Parallel Algorithm for Building Binned SAH BVH
	4.6.1 Filtering Next/Further Nodes
	4.6.2 Modifications and Extensions
	4.6.2.1 Reducing Scan Passes for Triangles Projection.
	4.6.2.2 Projecting Triangles using Parallel Sorting.

	4.7 Linear Bounding Volume Hierarchy (LBVH)
	4.7.1 Hybrid binned SAH BVH Algorithm

	4.8 Analysis and Discussion
	4.9 Evalutions and Comparisons of Proposed Proposed Tree Construction Algorithms

	5 Ray Tracing on GPU
	5.1 Parallel Ray Tracing on GPU
	5.1.1 Parallel Rays Generation and Bouncing
	5.1.2 Building Shade Tree
	5.1.3 Accumulating Shading and Rendering

	5.2 Results and Dicussion
	5.2.1 Ray Tracing Performance

	6 Photon Mapping on GPU
	6.1 Introduction to Offline Photon Mapping
	6.1.1 The First Pass -Building Photon Map(s)-
	6.1.1.1 Photon Emission
	6.1.1.2 Photon Tracing and Storing

	6.1.2 The Second Pass - Rendering-
	6.1.2.1 Radiance Estimate
	6.1.2.2 Final Gather for Indirect Lighting
	6.1.2.3 Irradiance Caching

	6.2 Parallel Photon Mapping on GPU
	6.2.1 Parallel Photon Tracing
	6.2.2 Building Photons KD-Tree on GPU
	6.2.2.1 Initialization Stage
	6.2.2.2 Large Node Stage
	6.2.2.3 Small Node Stage

	6.2.3 Irradiance Estimation
	6.2.3.1 Selecting Irradiance Samples

	6.2.4 Final Gather on GPU
	6.2.5 Rendering on GPU -Putting All Together-

	6.3 Results and Dicussion
	6.3.1 Photon Mapping Performance

	7 Conclusion and Future Work
	7.1 Conclustion
	7.2 Future Work

	A Frequently Used Utilities on GPU
	B Parallel Chunking Primitive and Utility
	Bibliography

